104 research outputs found

    Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study

    Get PDF
    The global atmospheric iron (Fe) cycle is parameterized in the global 3-D chemical transport model TM4-ECPL to simulate the proton- and the organic ligand-promoted mineral-Fe dissolution as well as the aqueous-phase photochemical reactions between the oxidative states of Fe (III/II). Primary emissions of total (TFe) and dissolved (DFe) Fe associated with dust and combustion processes are also taken into account, with TFe mineral emissions calculated to amount to ~ 35 Tg-Fe yr−1 and TFe emissions from combustion sources of ~ 2 Tg-Fe yr−1. The model reasonably simulates the available Fe observations, supporting the reliability of the results of this study. Proton- and organic ligand-promoted Fe dissolution in present-day TM4-ECPL simulations is calculated to be ~ 0.175 Tg-Fe yr−1, approximately half of the calculated total primary DFe emissions from mineral and combustion sources in the model (~ 0.322 Tg-Fe yr−1). The atmospheric burden of DFe is calculated to be ~ 0.024 Tg-Fe. DFe deposition presents strong spatial and temporal variability with an annual flux of ~ 0.496 Tg-Fe yr−1, from which about 40 % (~ 0.191 Tg-Fe yr−1) is deposited over the ocean. The impact of air quality on Fe deposition is studied by performing sensitivity simulations using preindustrial (year 1850), present (year 2008) and future (year 2100) emission scenarios. These simulations indicate that about a 3 times increase in Fe dissolution may have occurred in the past 150 years due to increasing anthropogenic emissions and thus atmospheric acidity. Air-quality regulations of anthropogenic emissions are projected to decrease atmospheric acidity in the near future, reducing to about half the dust-Fe dissolution relative to the present day. The organic ligand contribution to Fe dissolution shows an inverse relationship to the atmospheric acidity, thus its importance has decreased since the preindustrial period but is projected to increase in the future. The calculated changes also show that the atmospheric DFe supply to the globe has more than doubled since the preindustrial period due to 8-fold increases in the primary non-dust emissions and about a 3-fold increase in the dust-Fe dissolution flux. However, in the future the DFe deposition flux is expected to decrease (by about 25 %) due to reductions in the primary non-dust emissions (about 15 %) and in the dust-Fe dissolution flux (about 55 %). The present level of atmospheric deposition of DFe over the global ocean is calculated to be about 3 times higher than for 1850 emissions, and about a 30 % decrease is projected for 2100 emissions. These changes are expected to impact most on the high-nutrient–low-chlorophyll oceanic regions

    Estimates of the changes in tropospheric chemistry which result from human activity and their dependence on NO(x) emissions and model resolution

    Get PDF
    As a consequence of the non-linear behavior of the chemistry of the atmosphere and because of the short lifetime of nitrogen oxides (NO(x)), two-dimensional models do not give an adequate description of the production and destruction rates of NO(x) and their effects on the distributions of the concentration of ozone and hydroxyl radical. In this study, we use a three-dimensional model to evaluate the contribution of increasing NO(x) emissions from industrial activity and biomass burning to changes in the chemical composition of the troposphere. By comparing results obtained from longitudinally-uniform and longitudinally-varying emissions of NO(x), we demonstrate that the geographical representation of the NO(x) emissions is crucial in simulating tropospheric chemistry

    Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    Get PDF
    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr−1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr−1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr−1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total bioavailable P flux of about 0.17 Tg-P yr−1 to the oceans is derived. Our calculations further show that in some regions more than half of the bioavailable P deposition flux to the ocean can originate from biological particles, while this contribution is found to maximize in summer when atmospheric deposition impact on the marine ecosystem is the highest due to ocean stratification. Thus, according to this global study, a largely unknown but potentially important role of terrestrial bioaerosols as suppliers of bioavailable P to the global ocean is also revealed. Overall, this work provides new insights to the atmospheric P cycle by demonstrating that biological materials are important carriers of bioavailable P, with very important implications for past and future responses of marine ecosystems to global change

    Stratospheric impacts on dust transport and air pollution in West Africa and the Eastern Mediterranean

    Get PDF
    Saharan dust intrusions strongly impact Atlantic and Mediterranean coastal regions. Today, most operational dust forecasts extend only 2–5 days. Here we show that on timescales of weeks to months, North African dust emission and transport are impacted by sudden stratospheric warmings (SSWs), which establish a negative North Atlantic Oscillation-like surface signal. Chemical transport models show a large-scale dipolar dust response to SSWs, with the burden in the Eastern Mediterranean enhanced up to 30% and a corresponding reduction in West Africa. Observations of inhalable particulate (PM(10)) concentrations and aerosol optical depth confirm this dipole. On average, a single SSW causes 680–2460 additional premature deaths in the Eastern Mediterranean and prevents 1180–2040 premature deaths in West Africa from exposure to dust-source fine particulate (PM(2.5)). Currently, SSWs are predictable 1–2 weeks in advance. Altogether, the stratosphere represents an important source of subseasonal predictability for air quality over West Africa and the Eastern Mediterranean

    Anthropogenic nitrogen inputs and impacts on oceanic N2O fluxes in the northern Indian Ocean: The need for an integrated observation and modelling approach

    Get PDF
    Anthropogenically-derived nitrogen input to the northern Indian Ocean has increased significantly in recent decades, based on both observational and model-derived estimates This external nutrient source is supplied by atmospheric deposition and riverine fluxes, and has the potential to affect the vulnerable biogeochemical systems of the Arabian Sea and Bay of Bengal, influencing productivity and oceanic production of the greenhouse-gas nitrous-oxide (N2O). We summarize current estimates of this external nitrogen source to the northern Indian Ocean from observations and models, highlight implications for regional marine N2O emissions using model-based analyses, and make recommendations for measurement and model needs to improve current estimates and future predictions of this impact. Current observationally-derived estimates of deposition and riverine nitrogen inputs are limited by sparse measurements and uncertainties on accurate characterization of nitrogen species composition. Ocean model assessments of the impact of external nitrogen sources on regional marine N2O production in the northern Indian Ocean estimate potentially significant changes but also have large associated uncertainties. We recommend an integrated program of basin-wide measurements combined with high-resolution modeling and more detailed characterization of nitrogen-cycle process to address these uncertainties and improve current estimates and predictions

    Formation and growth of atmospheric nanoparticles in the eastern Mediterranean : results from long-term measurements and process simulations

    Get PDF
    Atmospheric new particle formation (NPF) is a common phenomenon all over the world. In this study we present the longest time series of NPF records in the eastern Mediterranean region by analyzing 10 years of aerosol number size distribution data obtained with a mobility particle sizer. The measurements were performed at the Finokalia environmental research station on Crete, Greece, during the period June 2008-June 2018. We found that NPF took place on 27% of the available days, undefined days were 23% and non-event days 50 %. NPF is more frequent in April and May probably due to the terrestrial biogenic activity and is less frequent in August. Throughout the period under study, nucleation was observed also during the night. Nucleation mode particles had the highest concentration in winter and early spring, mainly because of the minimum sinks, and their average contribution to the total particle number concentration was 8 %. Nucleation mode particle concentrations were low outside periods of active NPF and growth, so there are hardly any other local sources of sub-25 nm particles. Additional atmospheric ion size distribution data simultaneously collected for more than 2 years were also analyzed. Classification of NPF events based on ion spectrometer measurements differed from the corresponding classification based on a mobility spectrometer, possibly indicating a different representation of local and regional NPF events between these two measurement data sets. We used the MALTE-Box model for simulating a case study of NPF in the eastern Mediterranean region. Monoterpenes contributing to NPF can explain a large fraction of the observed NPF events according to our model simulations. However the adjusted parameterization resulting from our sensitivity tests was significantly different from the initial one that had been determined for the boreal environment.Peer reviewe

    Atmospheric Organic Material and the Nutrients Nitrogen and Phosphorus It Carries to the Ocean

    Get PDF
    [1] The global tropospheric budget of gaseous and particulate non‐methane organic matter (OM) is re‐examined to provide a holistic view of the role that OM plays in transporting the essential nutrients nitrogen and phosphorus to the ocean. A global 3‐dimensional chemistry‐transport model was used to construct the first global picture of atmospheric transport and deposition of the organic nitrogen (ON) and organic phosphorus (OP) that are associated with OM, focusing on the soluble fractions of these nutrients. Model simulations agree with observations within an order of magnitude. Depending on location, the observed water soluble ON fraction ranges from ∌3% to 90% (median of ∌35%) of total soluble N in rainwater; soluble OP ranges from ∌20–83% (median of ∌35%) of total soluble phosphorus. The simulations suggest that the global ON cycle has a strong anthropogenic component with ∌45% of the overall atmospheric source (primary and secondary) associated with anthropogenic activities. In contrast, only 10% of atmospheric OP is emitted from human activities. The model‐derived present‐day soluble ON and OP deposition to the global ocean is estimated to be ∌16 Tg‐N/yr and ∌0.35 Tg‐P/yr respectively with an order of magnitude uncertainty. Of these amounts ∌40% and ∌6%, respectively, are associated with anthropogenic activities, and 33% and 90% are recycled oceanic materials. Therefore, anthropogenic emissions are having a greater impact on the ON cycle than the OP cycle; consequently increasing emissions may increase P‐limitation in the oligotrophic regions of the world\u27s ocean that rely on atmospheric deposition as an important nutrient source

    Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans

    Get PDF
    Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3-) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ~2900 observations of aerosol NO3- and NH4+ concentrations, acquired from sampling aboard ships in the period 1995 - 2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes, however these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux are therefore very difficult to validate for dry deposition. Here the available observational data were averaged over a 5° x 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the TM4-ECPL (TM4) model: ModDep for NOy, NHx and particulate NO3- and NH4+, and surface-level particulate NO3- and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than TM4, while TM4 gives access to speciated parameters (NO3- and NH4+) that are more relevant to the observed parameters and which are not available in ACCMIP. Dry deposition fluxes (CalDep) were calculated from the observed concentrations using estimates of dry deposition velocities. Model – observation ratios, weighted by grid-cell area and numbers of observations, (RA,n) were used to assess the performance of the models. Comparison in the three study regions suggests that TM4 over-estimates NO3- concentrations (RA,n = 1.4 – 2.9) and under-estimates NH4+ concentrations (RA,n = 0.5 – 0.7), with spatial distributions in the tropical Atlantic and northern Indian Ocean not being reproduced by the model. In the case of NH4+ in the Indian Ocean, this discrepancy was probably due to seasonal biases in the sampling. Similar patterns were observed in the various comparisons of CalDep to ModDep (RA,n = 0.6 – 2.6 for NO3-, 0.6 – 3.1 for NH4+). Values of RA,n for NHx CalDep - ModDep comparisons were approximately double the corresponding values for NH4+ CalDep - ModDep comparisons due to the significant fraction of gas-phase NH3 deposition incorporated in the TM4 and ACCMIP NHx model products. All of the comparisons suffered due to the scarcity of observational data and the large uncertainty in dry deposition velocities used to derive deposition fluxes from concentrations. These uncertainties have been a major limitation on estimates of the flux of material to the oceans for several decades. Recommendations are made for improvements in N deposition estimation through changes in observations, modelling and model – observation comparison procedures. Validation of modelled dry deposition requires effective comparisons to observable aerosol-phase species concentrations and this cannot be achieved if model products only report dry deposition flux over the ocean

    Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans

    Get PDF
    Acidification of airborne dust particles can dramatically increase the amount of bioavailable phosphorus (P) deposited on the surface ocean. Experiments were conducted to simulate atmospheric processes and determine the dissolution behaviour of phosphorus compounds in dust and dust precursors oils. Acid dissolution occurs rapidly (seconds to minutes) and is controlled by the amount of H + ions present. For H + 10-4 mol per gram of dust, the amount of phosphorus (and Ca) released follows a power law dependent on the amount of H + consumed until all inorganic phosphorus minerals are exhausted and the final pH remains acidic. Once dissolved, phosphorus will stay in solution due to slow precipitation kinetics. Dissolution of apatite-P, the major mineral phase in dust (79-96%), occurs whether CaCO 3 is present or not, though the increase in dissolved phosphorus is greater if CaCO 3 is absent or if the particles are externally mixed. The system was modelled adequately as a simple mixture of apatite-P and calcite. Phosphorus dissolves readily by acid processes in the atmosphere in contrast to iron, which dissolves slower and is subject to re-precipitation at cloud water pH. We show that acidification can increase bioavailable phosphorus deposition over large areas of the globe, and may explain much of the previously observed patterns of variability in leachable phosphorus in oceanic areas where primary productivity is limited by this nutrient (e.g. Mediterranean)

    Pyrogenic iron: The missing link to high iron solubility in aerosols

    Get PDF
    Atmospheric deposition is a source of potentially bioavailable iron (Fe) and thus can partially control biological productivity in large parts of the ocean. However, the explanation of observed high aerosol Fe solubility compared to that in soil particles is still controversial, as several hypotheses have been proposed to explain this observation. Here, a statistical analysis of aerosol Fe solubility estimated from four models and observations compiled from multiple field campaigns suggests that pyrogenic aerosols are the main sources of aerosols with high Fe solubility at low concentration. Additionally, we find that field data over the Southern Ocean display a much wider range in aerosol Fe solubility compared to the models, which indicate an underestimation of labile Fe concentrations by a factor of 15. These findings suggest that pyrogenic Fe-containing aerosols are important sources of atmospheric bioavailable Fe to the open ocean and crucial for predicting anthropogenic perturbations to marine productivity
    • 

    corecore