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Abstract 28 

Acidification of airborne dust particles can dramatically increase the amount of bioavailable 29 

phosphorus (P) deposited on the surface ocean. Experiments were conducted to simulate 30 

atmospheric processes and determine the dissolution behaviour of phosphorus compounds 31 

in dust and dust precursor soils. Acid dissolution occurs rapidly (seconds to minutes) and is 32 

controlled by the amount of H+ ions present. For H+ <10-4 mol per gram dust, 1-10% of the 33 

total phosphorus is dissolved, largely as a result of dissolution of surface-bound forms. At H+ 34 

>10-4 mol per gram of dust, the amount of phosphorus (and Ca) released follows a power 35 

law dependent on the amount of H+ consumed until all inorganic phosphorus minerals are 36 

exhausted and the final pH remains acidic. Once dissolved, phosphorus will stay in solution 37 

due to slow precipitation kinetics. Dissolution of apatite-P, the major mineral phase in dust 38 

(79-96%), occurs whether CaCO3 is present or not, though the increase in dissolved 39 

phosphorus is greater if CaCO3 is absent or if the particles are externally mixed. The system 40 

was modelled adequately as a simple mixture of apatite-P and calcite. Phosphorus dissolves 41 

readily by acid processes in the atmosphere in contrast to iron, which dissolves slower and 42 

is subject to re-precipitation at cloud water pH. We show that acidification can increase 43 

bioavailable phosphorus deposition over large areas of the globe, and may explain much of 44 

the previously observed patterns of variability in leachable phosphorus in oceanic areas 45 

where primary productivity is limited by this nutrient (e.g. Mediterranean). 46 

 47 

Significance statement 48 

Mineral dust is the most important external source of phosphorus, a key nutrient controlling 49 

phytoplankton productivity and carbon uptake, to the offshore ocean. The bioavailable 50 

phosphorus in dust exhibits considerable and poorly understood variability. Detailed 51 

laboratory experiments elucidate and quantify the major processes controlling phosphorus 52 

dissolution in the atmosphere. Dust exposure to acids is the main driver of phosphorus 53 

mineral transformations, and a simple power law relationship is found between the amount 54 

of bioavailable phosphorus dissolved from the dust and acid exposure. Simulations suggest 55 
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that dust acidification increases leachable phosphorus over large areas of the globe and 56 

explains much of its variability in important oceanic areas where primary productivity is 57 

limited by this nutrient (e.g. N. Central Atlantic and Mediterranean). 58 

 59 
Author contributions: A.S., M.D.K., R.J.G.M., K.S.C. and L.G.B designed research; A.S., 60 

M.D.K. performed research; A.S., M.D.K., R.J.G.M., L.G.B., K.S.C., R.J.H., Z.S. S.M., M.K. 61 

and A.N. analyzed data and developed the modelling; and A.S., M.D.K., R.J.G.M., L.G.B., 62 

K.S.C., R.J.H., Z.S. and A.N. wrote the paper. 63 

 64 
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Introduction  66 

Atmospheric inputs are an important source of externally supplied nutrients to the offshore 67 

ocean (1). While all of the inorganic nitrogen is water-soluble and immediately bioavailable, 68 

most phosphorus (P) and iron (Fe) is present as minerals that are not immediately soluble in 69 

water, hence not bioavailable (2, 3). Such mineral particles, if deposited to the surface 70 

ocean, may pass through the photic zone with no effect on primary productivity, owing to 71 

their high settling velocity and low solubility (2). 72 

 73 

Atmospheric P can be important as the major external supply to the offshore ocean 74 

particularly in oligotrophic areas of the open ocean (1) and areas that are P limited such as 75 

the Sargasso Sea (4) and Mediterranean (5). The most important source of atmospheric P is 76 

desert dust, which has been estimated to supply 83% (1.15 Tg P a-1) of the total global 77 

sources of atmospheric phosphorus (6). Of that dust they estimate 10% is as leachable P. 78 

However observations suggest that the fraction of leachable P in dust is highly variable (7-79 

100%) (7). Only one global modelling study primitively simulates such variability, considering 80 

reaction of protons with apatite minerals using a kinetic approach (8). The same study 81 

indicates that deposition of P from biological particles of terrestrial origin may be as 82 

important as leachable P from dust over the ocean in some regions and certain seasons. 83 

This translates to a large predictive uncertainty of the bioavailable P input to the oceans. 84 

Studies show that, whilst atmospheric N and Fe supply are of importance on a global scale, 85 

atmospheric P supply plays an important secondary role, especially through co-limitation 86 

with either N or Fe (9, 10). The varying demands and resilience of different phytoplankton 87 

communities can have feedbacks on local limiting nutrients on relatively short time scales 88 

(11, 12). Additionally, evidence suggests feedbacks in the surface waters that may enhance 89 

the impact of the atmospheric supply of P (1, 13). This complex picture is yet to be replicated 90 

in global biogeochemistry models and therefore it is not currently possible to put a limit on 91 

the importance of any atmospherically supplied P. 92 

 93 
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Previous studies have shown that atmospheric processes can increase Fe bioavailability in 94 

dust before being deposited to the ocean. Insoluble Fe, principally as iron oxides, can be 95 

solubilised by, interaction with acid gases that reduce the pH of atmospheric water to the 96 

level where solid phase Fe species can start to dissolve (14), by interaction with organic 97 

ligands or by UV photoreduction at predicted considerable amounts (15). By contrast, the 98 

principal mineral species of P in aerosols, apatite minerals (e.g., hydroxyapatite, 99 

Ca5OH(PO4)3), are only expected to be solubilised by acid processes in the atmosphere 100 

since they do not undergo photoreduction and Ca is not strongly complexed by organic 101 

ligands. Nenes et al. (7) in a study on dust particles sampled in the eastern Mediterranean, 102 

found a correlation between increased leachable inorganic phosphorus (LIP) and increased 103 

acid exposure in the aerosol particles. Furthermore, the amounts of P released during 104 

acidification were consistent with the thermodynamic limit of solubility. However, no further 105 

insight on the mechanism and dissolution kinetics could be obtained. 106 

 107 

The principal acid precursor species in the atmosphere are NOX and SOX. These can be the 108 

result of natural processes such as the oxidation of dimethyl sulphide (DMS) released by 109 

phytoplankton in oceanic surface waters (16), volcanic eruptions (17), or lightning. However, 110 

at present the main source of such gases is anthropogenic (18). To a lesser degree, low 111 

molecular-weight carboxylic acids (such as formic, acetic, and oxalic) are generated in large 112 

amounts in the atmosphere and can contribute acidity, especially in evaporated cloud 113 

droplets (18, 19).  114 

 115 

Fresh and aged dust particles can be contained within cloud droplets that dissolve acidic 116 

gases but with pH levels that do not drop much below 4 (18). Although some cloud droplets 117 

condense to form rain, most cloud droplets evaporate to form wet aerosol particles. This 118 

process results in a substantial drop in pH and an increase in ionic strength (IS) of the 119 

resultant film of water (20). This cycling between cloud droplet and wet aerosol can occur 120 

several times (an average of 10 cycles throughout the troposphere (18)) before the aerosol 121 
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drops to earth by wet or dry deposition. Thus the chemical conditions within and between 122 

clouds are very different, with relatively high pH and low IS in cloud droplets and low pH and 123 

high IS in wet aerosols (20-22). This cycling was investigated for its effect on Fe dissolution 124 

in the atmosphere by Shi et al. (23) who show that Fe is solubilised in wet aerosols and then 125 

re-precipitated as Fe nanoparticles in clouds. By contrast, the impact of pH changes or 126 

proton addition to atmospherically processed mineral dusts and subsequent P dissolution is 127 

virtually unknown (see also SI.1.2.). 128 

 129 

This study sets out to investigate the nature, magnitude and controls of atmospheric acid 130 

processes on the solubilisation of mineral P in dust particles using samples collected during 131 

dust storms in Israel and Greece, and on dust precursors collected from surface soils in a 132 

variety of locations across the Sahara desert (map included in the supporting information, 133 

SI.F1.1.). Experiments were carried out using principally natural dust particles to mimic 134 

atmospherically relevant conditions and thereby represent the amount of P solubilised by 135 

atmospheric acid processes. Results are interpreted by modelling the experimental systems 136 

using the geochemical PHREEQC model (24). Calculations using a global 3-D atmospheric 137 

chemical transport model (TM4-ECPL; 25) were used to estimate the potential global 138 

importance of these processes.  139 

 140 

Results 141 

Properties of dusts. The highest P concentration was found in the dust sample from Israel 142 

(Fig. 1 top panel). The sequential phosphate extractions (SEDEX; 26) revealed that apatite 143 

was the dominant P mineral (Fig. 1, bottom panel). Total inorganic P (which includes 144 

leachable P, iron bound P, apatite P, and carbonate P) varied between 7.7 and 60.0 mol 145 

g1, and represents 55 to 92% of the total SEDEX phosphorus in the sample. The remainder 146 

of the phosphorus was made up of organic P (for full SEDEX data, mineral composition and 147 

BET surface area see SI.3.1.2.). 148 
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 149 

Effect of protons and fluid volume on the dissolution of Ca and P minerals. Fig. 2 150 

shows the combined effects of pH and volume on the release of phosphorus from the Israel 151 

dust (legends used in this Figure are used consistently in all subsequent Figures and within 152 

the Supporting Information). Both more acid pH values (at equal water volume) and higher 153 

volumes (at equal pH) yield greater P concentrations. The amount of P (Fig. 2 and 3) and Ca 154 

(Fig. 4) released from the dust was controlled by the amount of H+ ions present and not the 155 

initial pH. Fig. 3 shows the released P plotted versus the absolute concentration of protons 156 

in the experiments (i.e., mol of H+ per g of dust). The data showed that below a critical 157 

proton concentration of ~0.1 mmol per gram of dust (-4 log mol(H+)/g dust), the released P 158 

was only affected by water volume and not the proton concentration. Above this proton 159 

concentration, an approximately linear increase in P with increasing initial proton 160 

concentration was seen, until a plateau was reached (~-2.1 log mol(H+)/g dust), where the 161 

acid reactive mineral phosphate pool was exhausted. A similar pattern was seen with Ca 162 

(Fig. 4), although the critical proton concentration was slightly lower than that seen for P. 163 

These Figures indicate that above a given proton concentration, both Ca and P mineral 164 

phases are subject to dissolution. Fe was only above the detection limits in limited 165 

experiments where excess protons allowed the pH to remain low throughout the experiment. 166 

Results for the other dust samples yielded similar trends for all analytes (see SI.3.2.). 167 

 168 

In all experiments the dust-solution mixtures tended to become buffered to neutral or alkali 169 

pH end-points after 48 hr of reaction. The exceptions were experiments where protons 170 

remained in excess and all Ca and P minerals were dissolved (SI.3.2.1.). Even using 171 

buffered solutions (SI.3.1.1.) the release profiles for P did not change from those described 172 

above. Similarly, instantaneous acid addition or slow acid diffusion also did not significantly 173 

alter the evolution of dissolved P in the experiments (SI.3.2.2.). When we tested a sequential 174 

batch addition of acid, the results (Fig. 3, 1 mL experimental data connected by solid line; 175 

see also SI.3.2.3.) were similar to experiments performed at higher concentration through a 176 
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single acid addition, implying consistent Ca and P mineral dissolution as the total proton 177 

exposure is increased. Finally, high IS also played a minimal role in driving P release 178 

(SI.3.2.3.).  179 

 180 

All experiments with the real dusts described above assumed that the reactive minerals 181 

(calcite and apatite) are found in every particle (“internally mixed”) at the ratio that can be 182 

calculated from the apatite and calcium concentrations determined in our study (Table 183 

SI.T3.1.). Although dust particles may be in reality “externally mixed” (particles of a given 184 

size have only calcite or apatite but not both), the low volume experiments brought the acidic 185 

fluid in contact with all particles, and thus the system behaved as internally mixed. CaCO3 186 

controlled the H+ content and the released phosphorus was totally dependent on reactive 187 

mineral composition. These results were confirmed experimentally through analogue dusts 188 

made up of single reactive mineral components (i.e., apatite only) or mixed reactive mineral 189 

components (apatite and calcite) that we used as dust proxies (SI.3.2.4.). The analogue 190 

experiments demonstrate that if dust particles were externally mixed then there would have 191 

been more P released per H+ amount compared to our real dust experiments (Fig. 2 and 3) 192 

because more protons are available for direct reaction with apatite. 193 

 194 

Comparison of experimental results with modelling. The close agreement between our 195 

precursor and real dust samples (SI.3.2.4.) suggests that the interaction between calcite and 196 

apatite with acidity, is the primary control of P solubility. This is confirmed by thermodynamic 197 

calculations for a system containing only calcite, apatite and solution (Fig. 5 and SI.3.3.). 198 

Above approximately 106 mol L1 for P and 104 mol L1 for Ca there was agreement 199 

between measurements and predictions. Below these concentrations, predicted Ca and P 200 

deviated somewhat from the measurements; likely owing to desorption of loosely bound P 201 

(SEDEX sorbed pool, Fig. 1, SI.T3.1.) and Ca.  202 

 203 

Discussion 204 
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We studied the dissolution of P-containing phases in the surface soils from areas that are 205 

known to be sources of Saharan dust (27) as well as two samples of dry deposited 206 

Saharan/Arabian dust. There was a relatively constant P speciation in the mineral 207 

composition of these dusts (Fig. 1). Given that the principal acid soluble mineral apatite-P 208 

(Ap-P), was on average 89 ± 7 % of the total inorganic P and Fe bound-P was only 7 ± 4% 209 

of the acid reactive mineral phases, we consider the proton reactions of only Ap-P and 210 

CaCO3 as controlling the atmospheric conversion of mineral P to leachable forms. Other 211 

processes that affect the solubilisation of Fe, such as photoreduction and organic 212 

complexation (12), are likely to have a minor role in increasing P bioavailability because only 213 

Fe bound-P will be affected by such processes. There is no evidence of organic P being 214 

affected by acidification. In addition to these acid soluble phases, a small amount (< 7%) 215 

was in the sorbed inorganic-P pool (extracted by 1M MgCl2), which is likely to be solubilised 216 

directly into seawater (26).  217 

 218 

Although our samples were collected or derived from widespread areas from the Sahara and 219 

Arabian deserts, they all had similar relative fractions of Ap-P, Fe-bound-P and adsorbed-P. 220 

This is consistent with a common weathering regime across these deserts, which combines 221 

some chemical weathering, little plant growth to convert P minerals into plant biomass in-situ 222 

and often reprecipitation of CaCO3 as caliche. However, we recognise that other regions of 223 

the Sahara, with different mineralogy (e.g. the Bodélé (28)), may exert an influence on the 224 

bulk properties of some Sahara dust plumes. Our samples had 7 × 104 to 3.3 × 103 mol g1 225 

acid soluble Ca, which is 6-33% by mass of CaCO3. Although the P mineral speciation was 226 

similar between samples, there was considerable variability in the total P concentration (9.1 227 

× 106 to 6.3 × 105 mol g1). 228 

 229 

In the atmosphere, dust particles cycle between clouds where they can become cloud 230 

condensation nuclei and wet aerosols. In clouds there is a high water:dust ratio, low IS and 231 
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generally high pH except in the unusual situation of very highly polluted air masses. Wet 232 

aerosols, which are generally formed when cloud water evaporates, contain a film of water 233 

and can have very low water:dust ratios, high IS and low pH (23). Our experiments were 234 

designed to span these conditions within the practical limitations of laboratory handling. The 235 

key parameter in controlling the amount of P (and Ca) liberated from acid processing was 236 

the total amount of H+ ions in the aqueous layer surrounding the dust particle and not the 237 

initial pH (Fig. 2-4). For all of our experiments, both CaCO3 and Ap-P were rapidly dissolved 238 

(as measured by Ca2+ and PO4-P liberated) and H+ ions consumed, on a timescale of 239 

second to minutes (SD3.1.1.). In most cases the pH was controlled by rapid reaction with 240 

CaCO3 to circumneutral values as shown by the simple relationship between the decrease in 241 

H+ ions being twice the increase in Ca2+ cations.  242 

 243 

At low H+ amounts (< 10-4 mol g1 dust) P was liberated over a wide range of H+ ion 244 

concentrations. This was interpreted as being due mainly to simple leaching of dissolved P 245 

from the samples into water, independent of the reaction of H+ with acid soluble minerals. 246 

This corresponds to the leachable P previously measured when dust was treated by 247 

deionised water or a very low strength leach (e.g. (29)). The amount of leached P is likely to 248 

be independent of whether there is CaCO3 in the dust sample or not.  249 

 250 

At proton concentrations above 104 mol H+ per gram of dust, there was a power law 251 

relationship between P (and Ca) released and the amount of H+ ions consumed (Fig. 2-4). 252 

This relatively simple pattern of P release continued until the level where all of the P 253 

minerals were exhausted. This was also the value at which the final pH in solution was no 254 

longer circumneutral but remained acidic. This value corresponded approximately to the 255 

value of total inorganic P determined by SEDEX extraction. Similar trends were obtained for 256 

all the other dust and dust precursor samples.  257 

 258 
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The relationship between P, Ca2+ and H+ ions for all the test samples was confirmed by 259 

PHREEQC equilibrium modelling in which there were similar increasing trends of P and Ca2+ 260 

obtained assuming a simple 3-component model of calcite, hydroxyapatite and H+ ions. The 261 

model fit was better for Ca2+ (controlled by calcite and H+ ions) than P where there was more 262 

scatter. This is considered reasonable as there is more than one acid-soluble P mineral 263 

present in all the natural samples and the Ap-P is also likely to be made up from a number of 264 

different apatite minerals with different solubility behaviour.  265 

 266 

Our results also showed that increased IS caused slightly more dissolved phosphate to be 267 

liberated into solution. Where the major contributor to increased IS was ammonium and 268 

sulphate, the most common ionic species in aerosols (18), it was found that the amount of P 269 

released fits on the trend for the HCl-only data if the proton availability from the dissociation 270 

of ammonium ions (predicted from a final pH of 8) is allowed for. In our experiments using 271 

NaCl (IS = 2), which was used as a surrogate for evaporated sea salt, the liberated P 272 

increased by a factor of 4.3. In both cases even if the IS decreases to that of rainwater the 273 

dissolved P will remain in solution due to very slow precipitation kinetics and will be 274 

delivered as bioavailable P to the surface ocean (30 and references therein).  275 

 276 

In the atmosphere some mineral particles have both CaCO3 and Ap-P on the same particle 277 

(internally mixed) while other particles have only one or the other mineral (externally mixed). 278 

Because acidity in the atmosphere is transferred to dust via the gas phase, the amount of 279 

dissolved P will vary between particles, depending on the amount of CaCO3. There were no 280 

data available characterising the degree of external mixing of CaCO3 and Ap-P in dust 281 

samples. However, we expect many of the particles to contain both CaCO3 and Ap-P 282 

because in many sedimentary rocks and desert soil systems there is a close association 283 

between CaCO3 and Ap-P. Both minerals precipitate in marine sediments during diagenesis 284 

(31) and such marine sediments are generally the source of Ap-P in desert soils (32). 285 

Furthermore, caliche forms in many desert soils as Ca and bicarbonate produced by in-situ 286 
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weathering are precipitated (33). However, our results show that in the situation where 287 

external mixing does occur, more P would be solubilised because on those particles with 288 

only Ap-P, there was no consumption of H+ by CaCO3 because it was absent from this 289 

experiment (Fig. SI.F3.3.). In reality, although we predict that many dust particles will be 290 

internally mixed, there will be a continuum and the balance between these two extremes 291 

may not be the same for all dust events.  292 

 293 

Comparison with Fe processes. The fraction of bioavailable Fe supplied to the ocean is 294 

also increased by acidic atmospheric processes (34). However, Fe dissolution is much 295 

slower than Ap-P (35). This means that for internally mixed particles, essentially all the H+ 296 

ions will be neutralised by CaCO3 before they react with Fe minerals. However Fe-bearing 297 

particles are often externally mixed as clays (36) or Fe-rich particles (37). Thus, dissolution 298 

of Fe and P can happen simultaneously on different particles. Furthermore, Fe dissolution 299 

occurs principally in wet aerosols (low pH with high IS; 23). When the aerosol particles are 300 

activated into clouds at lower pH, the Fe is likely to re-precipitate as nanoparticles (38) while 301 

P does not re-precipitate. The only removal of P will be adsorption onto fresh Fe 302 

nanoparticles if both processes occur on the same particle/droplet. In that situation both Fe 303 

and sorbed P are likely to be bioavailable.  304 

 305 

The potential importance to the global P cycle and supply to the ocean. The main acids 306 

in the atmosphere, H2SO4 and HNO3, are generated by the oxidation of sulphur and nitrogen 307 

gases emitted by biogenic, volcanic and anthropogenic sources (16-18), the latter of which is 308 

dominant at present. It has been noted that there is a higher fraction of LIP in polluted air 309 

masses (39, 40). Based on field samples collected in Crete, Nenes et al. (7) provided direct 310 

evidence of the increase in LIP in aerosols with increasing aerosol acidity. They suggest that 311 

this is from polluted air masses from southern Europe bringing acid gases from the north to 312 

mix with Saharan air mass. The increased fraction of LIP in atmospheric aerosols over the 313 

Bay of Bengal compared to those over the Arabian Sea, has also been interpreted as due to 314 
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the effect of acid processing of aerosols caused by anthropogenic activities (41). The action 315 

of the processes identified here may explain why aerosol samples across the N central 316 

Atlantic can have greater fractions of soluble P than dust soil precursors or aerosols 317 

collected closer to the dust source (42). Our results demonstrate that atmospheric acid 318 

processes are extremely efficient in solubilising P and provide further support to Nenes et al. 319 

(7) that acids can increase the delivery of bioavailable P from dust to the oceans. The 320 

amount of N fixation is also likely to increase since dust that has been acid processed will 321 

contain increased amounts of both bioavailable P and Fe which have been shown to limit N 322 

fixation (9). 323 

 324 

To examine whether acid dissolution of dust P can be globally important, we simulate the 325 

acid exposure of dust, and examine the extent to which it can occur. For this, we quantify the 326 

ratio between dust Ca and its acid exposure. We quantify the ion balance, Ib = 2[SO4] + 327 

[NO3] + [Cl] − 2[Ca] − [NH4] − [Na] − 2[Mg] − [K] (where [X] represents the concentration of 328 

species X in the aerosol sample, in mol m-3 air) over aerosol Ca (Fig. 6). Calculations are 329 

carried out with the global model framework of Myriokefalitakis et al. (25) using current day 330 

aerosol emissions and results are shown for coarse fraction of dust and the model surface 331 

layer, which is representative of the dust that deposits to the surface. Values of the ratio 332 

above 10-1 indicate regions where considerable solubilization of dust P is expected. The 333 

simulations clearly indicate that the flux of bioavailable P over considerable regions of the 334 

ocean can be substantially increased by acidified dust. This increase is likely to be greater 335 

than the 0.53 Tmol C yr1 that can be calculated from the predicted P solubilised by the 336 

kinetic apatite-P dissolution process presented in recent global modelling work (8). 337 

 338 

In many locations there has been a greater increase in N containing gases (particularly NOx 339 

and NH3) than particulate P, which is transported in the atmosphere. The molar ratio is 340 

typically greater than 16:1 and often much larger. It has been reported that this supply tends 341 

to make surface waters more P limited (43, 44). Our results suggest that this transformation 342 
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is somewhat moderated by the relative increase in bioavailable P due to interaction between 343 

NOx and dust particles. As a result, phytoplankton biomass and carbon uptake will increase 344 

even in areas of the ocean which are N limited in the short term since P remains the element 345 

which causes longer-term increase in primary productivity (45). The implications of this 346 

added carbon export from anthropogenic pollution to ocean ecosystems has the potential to 347 

be widespread and considerable, affecting global primary productivity and the carbon cycle. 348 

 349 

Methods 350 

Dust and precursor dust sources. Two dust samples and six size fractionated dust 351 

precursor samples were used in this study (Table 1). The majority of the experiments were 352 

carried out with a dust sample deposited on a clean, flat surface during a dust storm in Rosh 353 

Pina, Israel (collected 1st May 2012). A second dust sample was collected between June 1st 354 

and 9th, 2013 from a solar panel in Heraklion (Crete, Greece). Based on back trajectory data 355 

from the HYSPLIT model (http://ready.arl.noaa.gov/HYSPLIT.php), the origins of these dusts 356 

were the deserts of Saudi Arabia/Jordan/Iraq, and North Africa, respectively. These two real 357 

dusts were used directly as collected, without size fractioning or other pre-conditioning. In 358 

addition, six dust precursor samples collected from a variety of locations (mainly dry stream 359 

or lake bed soils) within the Sahara Desert (Table 1) were used to generate size fractionated 360 

dusts using a dust tower separation and filtration methods (46). We used the <10 m 361 

(PM10) fractions for our experiments, similar to previously used dust precursors that have 362 

been shown to be analogous to atmospherically sampled dust (46, 47). In this present study 363 

the term dust is used to refer to both the dust precursor and the real dust samples unless 364 

otherwise stated. 365 

 366 

 367 

Experimental procedures. SEDEX sequential phosphorus extraction. Phosphorus 368 

speciation amongst the different operationally-defined P pools was determined on 50-100 369 

mg of each dust (Table 1) following the SPExMan SEDEX sequential extraction scheme 370 

http://ready.arl.noaa.gov/HYSPLIT.php
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(48), with the modification that step IIA for Fe bound P followed the procedure of (49). This 371 

modification removes the use of citrate, slightly alters the pH to 7.5 and increases the 372 

reaction time to ten hours. The absence of citrate means that the resulting solutions do not 373 

require any pre-treatment, other than dilution, before analysis by the molybdate blue method 374 

(see below). Five P species were differentiated, namely: leachable or loosely sorbed; Fe 375 

bound; a combined pool containing authigenic apatite, biogenic apatite and CaCO3 bound; 376 

detrital apatite plus other inorganic P, and organic P. We defined apatite (Ap-P) as the 377 

combined phases extracted as diagenetic and detrital apatite, and CaCO3 bound-P in the 378 

sequential SEDEX extraction scheme. Total Inorganic P was defined as the sum of all the 379 

phases except organic P. Methods for mineral composition and surface area analysis are in 380 

SI.2.2. 381 

 382 

Phosphorous release experiments. The following experiments were performed on the dust 383 

samples using pH adjusted but unbuffered solutions (HCl, Sigma-Aldrich ≥37% ACS reagent 384 

grade in 18.2 Mcm MQ water) in an end-over-end stirrer for 48 hours. Israel dust (55±3 385 

mg); pH 2 HCl with volumes 70, 140, 210, 500 L & 1, 2, 5, 15 mL; 0.2 mL HCl at pH 0, 1, 2, 386 

3, 4, 5.5; 1 mL HCl at pH 0, 1, 3, 4, 5.5; 2 mL HCl at pH 0.3, 1.3, 2.3, 3.3, 4.3, 5.5; and 5 mL 387 

HCl at pH 1, 3, 5.5. Other dusts (30±1 mg); used 1.2 mL at pH 0, 1, 1.8, 2.4. Several initial 388 

experiments were carried out to determine the pH buffering capacities and the proton-dust 389 

reaction rates. We showed that almost all protons were consumed within ~ 200 seconds of 390 

starting the reaction and that the phosphate release was equally fast regardless of initial pH 391 

(SD2.2.1. and SI.3.1.1.). Nevertheless, we performed the majority of our experiments over a 392 

conservative time period of 48 hours, by which time all changes in concentration had been 393 

completed. At the end of these experiments, the mixture was passed through a 0.45 m 394 

syringe filter (13 mm Whatman Puradisc polyethersulfone) and dissolved phosphate was 395 

determined as described below. In the experiments with solution volumes ≥ 2 mL the final 396 

pH was measured following the 48 hr exposures. The effect of high ionic strength was tested 397 
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by adding either ammonium sulphate or NaCl to reach IS = 2 (SI.2.2.2). Furthermore, 398 

additional experiments were carried out to evaluate the effect of sequential solution addition 399 

(SI.2.2.3.), the effect of acid addition via dialysis (SI.2.2.4.), and the behaviour of simple lab 400 

prepared dust analogues (SI.2.2.5.). 401 

 402 

Chemical analysis of supernatants. Dissolved inorganic phosphorus was analysed using 403 

the molybdate blue reaction (50) after suitable dilution with matrix-matched standards on a 404 

segmented flow analyser. For high concentrations (>50 nmoles L1) this was done on a 405 

SEAL Analytical AA3. The RSD was 2.2% (n=8) and limit of detection (LOD; 3 × s.d of 406 

blank) was 12 nmoles L1. Lower concentration samples were analysed using a 100 cm WPI 407 

Liquid Waveguide Capillary Cell coupled to an Ocean Optics USB2000+ spectrophotometer 408 

with a precision (n=6 of 60 nmoles L1 samples) of 1.6% and a LOD of 2 nmoles L1. 409 

Dissolved calcium and iron concentrations in the supernatants were measured using a 410 

Thermo Scientific iCAP 7400 Radial ICP-OES. The Ca and Fe detection limits were <0.1 411 

nmoles and 500 nmoles L1 respectively; with RSD of 1.5% and 1.8% respectively (based on 412 

8 replicates of a 13 mmol L1 Ca)or 9.0 μmol L1 (Fe) standard). Finally, pH was measured 413 

with a Mettler Toledo Seven Excellence meter coupled to an Inlab Expert Pro-ISM pH 414 

electrode calibrated with three NIST traceable standard buffers (pH 4, 7 and 9.2; Mettler 415 

Toledo).  416 

 417 

Geochemical modelling of experimental systems. In order to evaluate the experimental 418 

results in terms of predicted equilibrium results, we used the geochemical modelling code 419 

PHREEQC (24), with the Lawrence Livermore National Laboratory database. Input 420 

conditions were based on the experimental starting solution conditions and assuming only 421 

hydroxyapatite and calcite were the reactive minerals present. The relative concentrations of 422 

these components were based on the dissolved Ca and P concentrations measured in the 423 

experiment for each dust under the most acid conditions.  424 
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 425 

Global 3-D atmospheric chemistry transport modelling using TM4-ECPL. The ratio of Ib 426 

(2[SO4] + [NO3] + [Cl] − 2[Ca] − [NH4] − [Na] − 2[Mg] − [K], where [X] represents the 427 

concentration of species X in the aerosol sample, in mol m-3 air) to Ca at surface has been 428 

calculated using model TM4-ECPL (25) that takes into account anthropogenic and natural 429 

emissions as described in the supporting information (SI.2.2.6) and uses ECMWF 430 

(European Centre for Medium – Range Weather Forecasts) Interim re–analysis project (ERA 431 

– Interim) meteorology to drive atmospheric transport. The model uses the ISORROPIA II 432 

thermodynamic model (51) to solve the K+–Ca2+–Mg2+–NH4
+–Na+–SO4

2−–NO3
−–Cl−–H2O 433 

aerosol system and enables calculation of the aerosol water pH. 434 

 435 

Acknowledgements 436 

 Funding was provided by Leverhulme Trust entitled “Understanding the delivery of 437 

phosphorus nutrient to the oceans” Grant Number RPG 406. We thank N. Mihalopoulos for 438 

fruitful discussions and for providing dust samples and N. Drake for providing dust precursor 439 

samples. Z.S. acknowledges support from NERC (NE/I021616/1). A.N. acknowledges 440 

support from a Cullen-Peck Fellowship and Georgia Power Scholar funds. 441 

 442 

References 443 

1. Paytan A, McLaughlin K (2007) The oceanic phosphorus cycle. Chem Rev 444 

107(2):563-576. 445 

2. Eijsink LM, Krom MD, Herut B (2000) Speciation and burial flux of phosphorus in the 446 

surface sediments of the eastern Mediterranean. Am J Sci 300(6):483-503 447 

3. Shi Z, et al (2012) Impacts on iron solubility in the mineral dust by processes in the 448 

source region and the atmosphere: A review. Aeolian Res 5:21-42. 449 

4. Wu JF, Sunda W, Boyle EA, Karl DM (2000) Phosphate depletion in the western 450 

North Atlantic Ocean. Science 289(5480):759-762. 451 

5. Krom MD, Brenner S, Kress N, Gordon LI (1991) Phosphorus limitation of primary 452 

productivity in the eastern Mediterranean Sea. Limnol Oceanogr 36(3):424-432. 453 



 

18 
 

6. Mahowald N, et al (2008) Global distribution of atmospheric phosphorus sources, 454 

concentrations and deposition rates and anthropogenic impacts. Global Biogeochem Cy 455 

22(4):GB4026. 456 

7. Nenes A, et al (2011) Atmospheric acidification of mineral aerosols: A source of 457 

bioavailable phosphorus for the oceans. Atmos Chem Phys 11:6265-6272. 458 

8. Myriokefalitakis S, Nenes A, Baker AR, Mihalopoulos N, Kanakidou M (2016) 459 

Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global 460 

modelling study. Biogeosci Discuss doi:10.5194/bg-2016-215 461 

9. Mills MM, Ridame C, Davey M, La Roche J, Geider RJ (2004) Iron and phosphorus 462 

co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292-294. 463 

10. Moore CM, et al (2008) Relative influence of nitrogen and phosphorous availability on 464 

phytoplankton physiology and productivity in the oligotrophic sub-tropical North 465 

Atlantic Ocean. Limnol Oceanogr  53:291-305. 466 

11. Ward BA, Dutkiewicz S, Moore CM, Follows MJ (2013) Iron, phosphorus, and 467 

nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol Oceanogr  468 

58:2059-2075. 469 

12. Moore CM, et al (2013) Processes and patterns of oceanic nutrient limitation. Nature 470 

Geosci    6:701-710. 471 

13. Van Mooy BAS, et al (2015) Phytoplankton in the ocean use non-phosphorus lipids in 472 

response to phosphorus scarcity. Nature 458:69-72. 473 

14. Baker AR, Croot PL (2010) Atmospheric and marine controls on aerosol iron 474 

solubility in seawater. Mar Chem 120(1-4):4-13. 475 

15. Spokes JL, Jickells TD, Lim B (1994) Solubilisation of aerosol trace metals by cloud 476 

processing: A laboratory study. Geochim Cosmochim Acta 58(15):3281-3287. 477 

16. Liss PS, Hatton AD, Malin G, Nightingale PD, Turner SM (1997) Marine sulphur 478 

emissions. Philos T Roy Soc Lond B 352:159-168.  479 

17. Carbonnelle J, Dajlevic D, Zettwoog P, Sabroux JC (1982) Gas output 480 

measurements from an active volcano. Bull Volcanol 45(3):267-268. 481 

18. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics; from air pollution 482 

to climate change, 2nd Edition. John Wiley & sons Inc. New York. 483 

19. McNeill VF (2015) Aqueous organic chemistry in the atmosphere: sources and 484 

chemical processing of organic aerosols. Environ Sci Technol 49(3):1237-1244. 485 

20. Weber RJ, Guo H, Russell AG, Nenes A (2016) High aerosol acidity despite declining 486 

atmospheric sulfate concentrations over the past 15 years, Nat Geosci 9: 282-285. 487 

21. Meskhidze N, Chameides WL, Nenes A, Chen G (2003) Iron mobilization in mineral 488 

dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophys Res Lett 489 

30(21):2085. 490 



 

19 
 

22. Zhu X, Prospero JM, Millero FJ, Savoie DL, Brass GW (1992) The solubility of ferric 491 

ion in marine mineral aerosol solutions at ambient relative humidities. Mar Chem 492 

38(1-2):91-107. 493 

23. Shi Z, Krom MD, Bonneville S, Benning LG (2015) Atmospheric processing outside 494 

clouds increases soluble iron in mineral dust. Environ Sci Technol 49(3):1472-1427. 495 

24. Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC 496 

version 3 - A computer program for speciation, batch- reaction, one-dimensional 497 

transport, and inverse geochemical calculations: Techniques and Methods, book 6, 498 

chap. A43, pp497. U.S. Geological Survey. [http://pubs.usgs.gov/tm/06/a43; 499 

accessed 4th May 2015]. 500 

25. Myriokefalitakis S, et al (2015) Changes in dissolved iron deposition to the oceans 501 

driven by human activity: a 3-D global modelling study. Biogeosci 12:3973-3992. 502 

26. Ruttenberg K (1992) Development of a sequential extraction method for different 503 

forms of phosphorus in marine sediments. Limnol Oceanogr 37(7):1462-1482. 504 

27. Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global-scale attribution of 505 

anthropogenic and natural dust sources and their emission rates based on MODIS 506 

deep blue aerosol products. Rev Geophys 50(3):RG3005 507 

28. Hudson-Edwards K, Bristow CS, Cibin G, Mason G, Peacock CL (2014) Solid-phase 508 

phosphorus speciation in Saharan Bodélé Depression dusts and source sediments. 509 

Chem Geol 384:16-26. 510 

29. Baker AR, Kelly SD, Biswas KF, Witt M, Jickells TD (2003) Atmospheric deposition of 511 

nutrients to the Atlantic Ocean. Geophys Res Lett 30(24):2296.  512 

30. Golubev SV, Pokrovsky OS, Savenko VS (1999) Unseeded precipitation of calcium 513 

and magnesium phosphates from modified seawater solutions. J Cryst Growth 514 

205(3): 354-360. 515 

31. Van Cappellen P, Berner RA (1991) Fluorapatite crystal growth from modified 516 

seawater solutions. Geochim Cosmochim Acta 55(5):1219-1234.  517 

32. Gross A, et al (2015) Variability in sources and concentrations of Saharan Dust over 518 

the Atlantic Ocean. Environ Sci Technol Lett 2(2):31-37. 519 

33. Schlesinger WH (1985) The formation of caliche in soils of the Mojave Desert, 520 

California, Geochim Cosmochim Acta 49(1):57-66. 521 

34. Meskhidze N, Chameides WL, Nenes A (2005) Dust and pollution: a recipe for 522 

enhanced ocean fertilization? J Geophys Res 110(D3):D03301. 523 

35. Shi Z, et al (2011) Influence of chemical weathering and aging of iron oxides on the 524 

potential iron solubility of Saharan dust during simulated atmospheric processing. 525 

Global Biogeochem Cy 25, GB2010. 526 

http://pubs.usgs.gov/tm/06/a43


 

20 
 

36. Deboudt KA, Mussi GA, Flament P (2012), Red-ox speciation and mixing state of iron 527 

in individual African dust particles, J Geophys Res 117:D12307. 528 

37. Kandler K, et al. (2009) Size distribution, mass concentration, chemical and 529 

mineralogical composition and derived optical parameters of the boundary layer 530 

aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus B 61(1):32–50. 531 

38. Shi Z, et al. (2009) Formation of iron nanoparticles and increase in iron reactivity in 532 

the mineral dust during simulated cloud processing. Environ Sci Technol 43:6592-533 

6596. 534 

39. Anderson LD, Faul KL, Paytan A (2010) Phosphorus associations in aerosols; What 535 

can they tell us about P bioavailability? Mar Chem 120(1-4):44-56. 536 

40. Furutani H, Meguro A, Igushi H, Uematsu M (2010) Geographical distribution and 537 

sources of phosphorus aerosols over the North Pacific ocean Geophys Res Lett 37: 538 

L03805. 539 

41. Srinivas B, Sarin MM (2012) Atmospheric pathways of phosphorus to the Bay of 540 

Bengal: contribution from anthropogenic sources and mineral dust. Tellus B. 64: 541 

17174. 542 

42. Baker AR, Jickells TD, Witta M, Linge KL (2006) Trends in the solubility of iron, 543 

aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. 544 

Mar Chem 98:43-58. 545 

43. Baker AR, Kelly SD, Biswas KF, Witt M, Jickells TD (2003) Atmospheric deposition of 546 

nutrients to the Atlantic Ocean. Geophys Res Lett 30(24):2296. 547 

44. Christodoulaki S, et al. (2016) Human-Driven Atmospheric Deposition of N and P 548 

Controls on the East Mediterranean Marine Ecosystem, J Atmos Sci 73(4):1611-549 

1619. 550 

45. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and 551 

feedbacks on ocean primary production. Science 281(5374):200-206.  552 

46. Shi Z, et al (2011) Iron dissolution kinetics of mineral dust at low pH during simulated 553 

atmospheric processing. Atmos Chem Phys 11(3):995-1007. 554 

47. Lafon S, Sokolik IN, Rajot JL, Caquineau S, Gaudichet A (2006), Characterization of 555 

iron oxides in mineral dust aerosols: Implications for light absorption. J Geophys Res 556 

111:D21207. 557 

48. Ruttenberg KC, et al (2009) Improved, high-throughput approach for phosphorus 558 

speciation in natural sediments via the SEDEX sequential extraction method. Limnol 559 

Oceanogr: Methods 7:319–333. 560 

49. MacDonald KR (2013) Evaluation of selective iron extraction techniques to quantify 561 

iron-bound phosphorus in sediments. M.S. Thesis, Department of Oceanography, 562 

Univ. of Hawaii. 563 



 

21 
 

50. Murphy J, Riley JP (1962) A modified single solution method for the determination of 564 

phosphate in natural waters. Anal Chim Acta 27:31-36. 565 

51. Fountoukis C, Nenes A (2007) ISORROPIA II: a computationally efficient 566 

thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4
+–Na+–SO4

2−–NO3
−–Cl−–567 

H2O aerosols. Atmos Chem Phys 7(17):4639–4659. 568 

  569 



 

22 
 

Figures 570 

 571 

Fig. 1. Phosphorus speciation in the dust and dust precursor samples, as determined by 572 

SEDEX. The top panel shows the concentrations of P present in the different samples, the 573 

bottom panel details the relative fraction of the different inorganic P species. 574 

 575 

 576 

Fig. 2. Dissolved phosphate released from Israel dust in relation to pH and solution volume. 577 

Values are presented as moles per gram of dust. Dust masses were ~55 mg, and dust to 578 

volume ratios were 3.5 to 704.3 g L1. Inset panel shows the same data with the volume axis 579 

on a log scale. 580 
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 581 

Fig. 3. Dissolved phosphorus (moles per gram of dust) released from Israel dust in relation 582 

to the absolute concentration of protons that were available for reaction at the start of the 583 

experiment. Dust masses were ~55 mg, and dust to volume ratios were 3.5 to 704.3 g L1. 584 

The crossed boxes connected by a solid line represent a sequential acid addition experiment 585 

(SI.2.2.3.). 586 

 587 

 588 

Fig. 4. Dissolved calcium (moles per gram of dust) released from Israel dust in relation to the 589 

absolute concentration of protons that were available for reaction at the start of the 590 

experiment. Dust masses were ~55 mg, and dust to volume ratios were 3.5 to 704.3 g L1. 591 
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 592 

Fig. 5. Comparison of measured P and Ca dissolution from all dusts compared to equilibrium 593 

predictions made using PHREEQC. 594 

 595 

 596 

Fig. 6. Annual average ion balance over aerosol Ca. Calculations are performed with the 597 

global model framework of Myriokefalitakis et al. (25) using current day aerosol emissions. 598 

Values of the ratio above 10-1 indicate regions where considerable solubilization of dust P is 599 

expected, presuming that dust aerosol is present. 600 

 601 
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Tables 602 

Table 1. Samples used in this study and their source locations. 603 

Country of origin Location Coordinates 

Dusts    

Greece Crete 35°19'51"N, 25°40'04"E 

Israel  Rosh Pina 32°58'12"N, 35°33'32"E 

Precursor dusts   

Algeria  Bordj Mokhtar (BM) 21°19'30"N, 0°56'46"E 

Morocco   El Miyit (EM) 30°21'53"N, 5°37'29"W 

Morocco  Jebel Brahim (JB) 29°56'12"N, 5°37'43"W 

Libya  #7 32°02'42"N, 22°18'01"E 

Libya  #9 32°36'47"N, 22°11'42"E 

Libya  Tibesti (TIB) 25°35' N, 16°31' E 

 604 

 605 


