200 research outputs found

    nNOS-expressing neurons in the ventral tegmental area and substantia nigra pars compacta

    Get PDF
    GABA neurons in the VTA and SNc play key roles in reward and aversion through their local inhibitory control of dopamine neuron activity and through long-range projections to several target regions including the nucleus accumbens. It is not clear whether some of these GABA neurons are dedicated local interneurons or if they all collateralize and send projections externally as well as making local synaptic connections. Testing between these possibilities has been challenging in the absence of interneuron-specific molecular markers. We hypothesized that one potential candidate might be neuronal nitric oxide synthase (nNOS), a common interneuronal marker in other brain regions. To test this, we used a combination of immunolabelling (including antibodies for nNOS that we validated in tissue from nNOS-deficient mice) and cell type-specific virus-based anterograde tracing in mice. We found that nNOS-expressing neurons, in the parabrachial pigmented (PBP) part of the VTA and the SNc were GABAergic and did not make detectable projections, suggesting they may be interneurons. In contrast, nNOS-expressing neurons in the rostral linear nucleus (RLi) were mostly glutamatergic and projected to a number of regions, including the lateral hypothalamus (LH), the ventral pallidum (VP), and the median raphe (MnR) nucleus. Taken together, these findings indicate that nNOS is expressed by neurochemically- and anatomically-distinct neuronal sub-groups in a sub-region-specific manner in the VTA and SNc

    Computational Modeling of Silicate Glasses: A Quantitative Structure-Property Relationship Perspective

    Get PDF
    This article reviews the present state of Quantitative Structure-Property Relationships (QSPR) in glass design and gives an outlook into future developments. First an overview is given of the statistical methodology, with particular emphasis to the integration of QSPR with molecular dynamics simulations to derive informative structural descriptors. Then, the potentiality of this approach as a tool for interpretative and predictive purposes is highlighted by a number of recent inspiring applications

    Hepatitis E virus in blood components: a prevalence and transmission study in southeast England

    Get PDF
    BACKGROUND: The prevalence of hepatitis E virus (HEV) genotype 3 infections in the English population (including blood donors) is unknown, but is probably widespread, and the virus has been detected in pooled plasma products. HEV-infected donors have been retrospectively identifi ed through investigation of reported cases of possible transfusion-transmitted hepatitis E. The frequency of HEV transmission by transfusion and its outcome remains unknown. We report the prevalence of HEV RNA in blood donations, the transmission of the virus through a range of blood components, and describe the resulting morbidity in the recipients. METHODS: From Oct 8, 2012, to Sept 30, 2013, 225 000 blood donations that were collected in southeast England were screened retrospectively for HEV RNA. Donations containing HEV were characterised by use of serology and genomic phylogeny. Recipients, who received any blood components from these donations, were identifi ed and the outcome of exposure was ascertained. FINDINGS: 79 donors were viraemic with genotype 3 HEV, giving an RNA prevalence of one in 2848. Most viraemic donors were seronegative at the time of donation. The 79 donations had been used to prepare 129 blood components, 62 of which had been transfused before identifi cation of the infected donation. Follow-up of 43 recipients showed 18 (42%) had evidence of infection. Absence of detectable antibody and high viral load in the donation rendered infection more likely. Recipient immunosuppression delayed or prevented seroconversion and extended the duration of viraemia. Three recipients cleared longstanding infection after intervention with ribavirin or alteration in immunosuppressive therapy. Ten recipients developed prolonged or persistent infection. Transaminitis was common, but short-term morbidity was rare; only one recipient developed apparent but clinically mild post-transfusion hepatitis. INTERPRETATION: Our fi ndings suggest that HEV genotype 3 infections are widespread in the English population and in blood donors. Transfusion-transmitted infections rarely caused acute morbidity, but in some immunosuppressed patients became persistent. Although at present blood donations are not screened, an agreed policy is needed for the identifi cation of patients with persistent HEV infection, irrespective of origin, so that they can be off ered antiviral therapy

    Cohesin-dependence of neuronal gene expression relates to chromatin loop length

    Get PDF
    Cohesin and CTCF are major drivers of 3D genome organization, but their role in neurons is still emerging. Here, we show a prominent role for cohesin in the expression of genes that facilitate neuronal maturation and homeostasis. Unexpectedly, we observed two major classes of activity-regulated genes with distinct reliance on cohesin in mouse primary cortical neurons. Immediate early genes (IEGs) remained fully inducible by KCl and BDNF, and short-range enhancer-promoter contacts at the IEGs Fos formed robustly in the absence of cohesin. In contrast, cohesin was required for full expression of a subset of secondary response genes characterized by long-range chromatin contacts. Cohesin-dependence of constitutive neuronal genes with key functions in synaptic transmission and neurotransmitter signaling also scaled with chromatin loop length. Our data demonstrate that key genes required for the maturation and activation of primary cortical neurons depend on cohesin for their full expression, and that the degree to which these genes rely on cohesin scales with the genomic distance traversed by their chromatin contacts. Editor'

    Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model

    Get PDF
    Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calcium–sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calcium–sodium aluminosilicate gel structures than that previously established in the literature

    European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD.

    Get PDF
    BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is among the most common psychiatric disorders of childhood that persists into adulthood in the majority of cases. The evidence on persistence poses several difficulties for adult psychiatry considering the lack of expertise for diagnostic assessment, limited treatment options and patient facilities across Europe. METHODS: The European Network Adult ADHD, founded in 2003, aims to increase awareness of this disorder and improve knowledge and patient care for adults with ADHD across Europe. This Consensus Statement is one of the actions taken by the European Network Adult ADHD in order to support the clinician with research evidence and clinical experience from 18 European countries in which ADHD in adults is recognised and treated. RESULTS: Besides information on the genetics and neurobiology of ADHD, three major questions are addressed in this statement: (1) What is the clinical picture of ADHD in adults? (2) How can ADHD in adults be properly diagnosed? (3) How should ADHD in adults be effectively treated? CONCLUSIONS: ADHD often presents as an impairing lifelong condition in adults, yet it is currently underdiagnosed and treated in many European countries, leading to ineffective treatment and higher costs of illness. Expertise in diagnostic assessment and treatment of ADHD in adults must increase in psychiatry. Instruments for screening and diagnosis of ADHD in adults are available and appropriate treatments exist, although more research is needed in this age group

    Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals

    Full text link
    The use of carbonate 'clumped isotope' thermometry as a geochemical technique to determine temperature of formation of a carbonate mineral is predicated on the assumption that the mineral has attained an internal thermodynamic equilibrium. If true, then the clumped isotope signature is dependent solely upon the temperature of formation of the mineral without the need to know the isotopic or elemental composition of coeval fluids. However, anomalous signatures can arise under disequilibrium conditions that can make the estimation of temperatures uncertain by several degrees Celsius. Here we use ab initio calculations to examine the potential disequilibrium mineral signatures that may arise from the incorporation of dissolved inorganic carbon (DIC) species (predominantly aqueous carbonate and bicarbonate ions) into growing crystals without full equilibration with the crystal lattice.We explore theoretically the nature of clumping in the individual DIC species and the composite DIC pool under varying pH, salinity, temperature, and isotopic composition, and speculate about their effects upon the resultant disequilibrium clumping of the precipitates. We also calculate equilibrium clumped signatures for the carbonate minerals calcite, aragonite, and witherite. Our models indicate that each DIC species has a distinct equilibrium clumped isotope signature such that, δ47(H2CO3)>δ47HCO3->δ47(equilibrium calcite)>δ47CO32-, and predict a difference between δ47HCO3-andδ47CO32->0.033‰ at 25°C, and that δ47 (aragonite)>δ47 (calcite)>δ47 (witherite). We define the calcite clumped crossover pH as the pH at which the composite δ47 (DIC pool)=δ47 (equilibrium calcite). If disequilibrium δ47 (calcite) is misinterpreted as equilibrium δ47 (calcite), it is possible to overestimate or underestimate the growth temperature by small but significant amounts. Increases in salinity lower the clumped crossover pH and may cause larger effects. Extreme effects of pH, salinity, and temperature, such as between cold freshwater lakes at high latitudes to hot hypersaline environments, are predicted to have sizeable effects on the clumped isotope composition of aqueous DIC pools.In order to determine the most reliable and efficient modeling methods to represent aqueous dissolved inorganic carbon (DIC) species and carbonate minerals, we performed convergence and sensitivity testing on several different levels of theory. We used 4 different techniques for modeling the hydration of DIC: gas phase, implicit solvation (PCM and SMD), explicit solvation (ion with 3 water molecules) and supermolecular clusters (ion plus 21 to 32 water molecules with geometries generated by molecular dynamics). For each solvation technique, we performed sensitivity testing by combining different levels of theory (up to 8 ab initio/hybrid methods, each with up to 5 different sizes of basis sets) to understand the limits of each technique. We looked at the degree of convergence with the most complex (and accurate) models in order to select the most reliable and efficient modeling methods. The B3LYP method combined with the 6-311++G(2d,2p) basis set with supermolecular clusters worked well. © 2013 Elsevier Ltd
    • …
    corecore