118 research outputs found

    Thickness dependant characterization of chemically exfoliated TiS2 nanosheets

    Get PDF
    Monolayer TiS2 is the lightest member of the transition metal dichalcogenides family with promising application in energy storage and conversion systems. Use of TiS2 has been limited by the lack of rapid characterisation of layer number via Raman spectroscopy and its easy oxidation in wet environment. Here, we demonstrate layer number dependent Raman modes for TiS2. 1T-TiS2 presents two characteristics Raman active modes, A1g (out-of-plane) and Eg (in-plane). We identified a characteristic peak frequency shift of the Eg mode with the layer number and an unexplored Raman mode at 372 cm-1 whose intensity changes relative to the A1g mode with the thickness of TiS2 sheets. These two characteristic features of the Raman spectra allow the determination of layer numbers between 1 and 5 in exfoliated TiS2. Further, we develop a method to produce oxidation-resistant inks of micron sized mono- and few-layered TiS2 nanosheets at concentrations up to 1 mg/mL .These TiS2 inks can be deposited to form thin films with controllable thickness and nanosheet density over cm2 areas. This opens up pathways for a wider utilization of exofliated TiS2 towards a range of applications

    Forced Rayleigh Scattering Studies of Tracer Diffusion in a Nematic Liquid Crystal: The Relevance of Complementary Gratings

    Full text link
    We have employed forced Rayleigh scattering (FRS) to study the diffusion of an azo tracer molecule (methyl red) through a nematic liquid crystal (5CB). This system was first investigated in an important study by Hara et al. (Japan. J. Appl. Phys. 23, 1420 [1984]). Since that time, it has become clear that the presence of complementary ground-state and photoproduct FRS gratings can result in nonexponential profiles, and that complementary-grating effects are significant even when "minor" deviations from exponential decay are observed. We have investigated the methyl red/5CB system in order to evaluate the possible effects of complementary gratings. In the isotropic phase, we find that the presence of complementary gratings results in a nonmonotonic FRS signal, which significantly changes the values inferred for the isotropic diffusion coefficients. As a result, the previously reported discontinuity at the nematic/isotropic transition temperature (TNI) is not present in the new data. On the other hand, in the nematic phase, the new experiments largely confirm the previous observations of single-exponential FRS decay and the non-Arrhenius temperature dependence of the nematic diffusion coefficients close to TNI. Finally, we have also observed that the decrease in the diffusion anisotropy with increasing temperature can be correlated with the 5CB nematic order parameter S(T) over the full nematic temperature range.Comment: Accepted in the Journal of Chemical Physics; to appear February 200

    The Amundsen Sea Polynya International Research Expedition (ASPIRE)

    Get PDF
    In search of an explanation for some of the greenest waters ever seen in coastal Antarctica and their possible link to some of the fastest melting glaciers and declining summer sea ice, the Amundsen Sea Polynya International Research Expedition (ASPIRE) challenged the capabilities of the US Antarctic Program and RVIB Nathaniel B. Palmer during Austral summer 2010–2011. We were well rewarded by both an extraordinary research platform and a truly remarkable oceanic setting. Here we provide further insights into the key questions that motivated our sampling approach during ASPIRE and present some preliminary findings, while highlighting the value of the Palmer for accomplishing complex, multifaceted oceanographic research in such a challenging environment

    Freshwater distributions and water mass structure in the Amundsen Sea Polynya region, Antarctica

    Get PDF
    We present the first densely-sampled hydrographic survey of the Amundsen Sea Polynya (ASP) region, including a detailed characterization of its freshwater distributions. Multiple components contribute to the freshwater budget, including precipitation, sea ice melt, basal ice shelf melt, and iceberg melt, from local and non-local sources. We used stable oxygen isotope ratios in seawater (ÎŽ18O) to distinguish quantitatively the contributions from sea ice and meteoric-derived sources. Meteoric fractions were high throughout the winter mixed layer (WML), with maximum values of 2–3% (±0.5%). Because the ASP region is characterized by deep WMLs, column inventories of total meteoric water were also high, ranging from 10–13 m (±2 m) adjacent to the Dotson Ice Shelf (DIS) and in the deep trough to 7–9 m (±2 m) in shallower areas. These inventories are at least twice those reported for continental shelf waters near the western Antarctic Peninsula. Sea ice melt fractions were mostly negative, indicating net (annual) sea ice formation, consistent with this area being an active polynya. Independently determined fractions of subsurface glacial meltwater (as one component of the total meteoric inventory) had maximum values of 1–2% (±0.5%), with highest and shallowest maximum values at the DIS outflow (80–90 m) and in iceberg-stirred waters (150–200 m). In addition to these upwelling sites, contributions of subsurface glacial meltwater could be traced at depth along the ~ 27.6 isopycnal, from which it mixes into the WML through various processes. Our results suggest a quasi-continuous supply of melt-laden iron-enriched seawater to the euphotic zone of the ASP and help to explain why the ASP is Antarctica’s most biologically productive polynya per unit area

    Dose-resolved serial synchrotron and XFEL structures of radiation-sensitive metalloproteins

    Get PDF
    An approach is demonstrated to obtain, in a sample- and time-efficient manner, multiple dose-resolved crystal structures from room-temperature protein microcrystals using identical fixed-target supports at both synchrotrons and X-ray free-electron lasers (XFELs). This approach allows direct comparison of dose-resolved serial synchrotron and damage-free XFEL serial femtosecond crystallography structures of radiation-sensitive proteins. Specifically, serial synchrotron structures of a heme peroxidase enzyme reveal that X-ray induced changes occur at far lower doses than those at which diffraction quality is compromised (the Garman limit), consistent with previous studies on the reduction of heme proteins by low X-ray doses. In these structures, a functionally relevant bond length is shown to vary rapidly as a function of absorbed dose, with all room-temperature synchrotron structures exhibiting linear deformation of the active site compared with the XFEL structure. It is demonstrated that extrapolation of dose-dependent synchrotron structures to zero dose can closely approximate the damage-free XFEL structure. This approach is widely applicable to any protein where the crystal structure is altered by the synchrotron X-ray beam and provides a solution to the urgent requirement to determine intact structures of such proteins in a high-throughput and accessible manner

    High-throughput structures of protein–ligand complexes at room temperature using serial femtosecond crystallography

    Get PDF
    High-throughput X-ray crystal structures of protein–ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein–ligand complexes using SFX

    Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements

    Get PDF
    The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twentyone laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7°C. However, most of the data fall within a narrower range and the Porites coral reference material JCp- 1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5°C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is <0.5°C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1

    Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844–848

    Get PDF
    Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000–3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons—Leu844, Cys845, Ala846, Leu847, and Gly848—located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∌0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844–848 exists and will be valuable in the management and genetic counseling of a significant number of individuals

    Evaluation of phosphorus in forest soils: Comparison of phosphorus uptake, extraction method and soil properties

    Full text link
    Phosphorus in soils from plantation of red pine ( Pinus resinosa Ait.) was determined using six extractants: 0.002 N H 2 SO 4 (pH 3.0); 0.025 N HCl+ +0.03 N NH 4 F; 0.5 N NaHCO 3 (pH 8.5); N NH 4 OAc (pH 4.8); anion exchange resin (Dower −2, Cl-form); H 2 O. Correlations of extractable P with Al- and Al-+Fe-P indicated that these fractions are the dominant forms of inorganic P in most of the soils.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43473/1/11104_2005_Article_BF02149737.pd
    • 

    corecore