71 research outputs found

    Significance of Four Methionine Sulfoxide Reductases in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is a major human pathogen and emergence of antibiotic resistance in clinical staphylococcal isolates raises concerns about our ability to control these infections. Cell wall-active antibiotics cause elevated synthesis of methionine sulfoxide reductases (Msrs: MsrA1 and MsrB) in S. aureus. MsrA and MsrB enzymes reduce S-epimers and R-epimers of methionine sulfoxide, respectively, that are generated under oxidative stress. In the S. aureus chromosome, there are three msrA genes (msrA1, msrA2 and msrA3) and one msrB gene. To understand the precise physiological roles of Msr proteins in S. aureus, mutations in msrA1, msrA2 and msrA3 and msrB genes were created by site-directed mutagenesis. These mutants were combined to create a triple msrA (msrA1, msrA2 and msrA3) and a quadruple msrAB (msrA1, msrA2, msrA3, msrB) mutant. These mutants were used to determine the roles of Msr proteins in staphylococcal growth, antibiotic resistance, adherence to human lung epithelial cells, pigment production, and survival in mice relative to the wild-type strains. MsrA1-deficient strains were sensitive to oxidative stress conditions, less pigmented and less adherent to human lung epithelial cells, and showed reduced survival in mouse tissues. In contrast, MsrB-deficient strains were resistant to oxidants and were highly pigmented. Lack of MsrA2 and MsrA3 caused no apparent growth defect in S. aureus. In complementation experiments with the triple and quadruple mutants, it was MsrA1 and not MsrB that was determined to be critical for adherence and phagocytic resistance of S. aureus. Overall, the data suggests that MsrA1 may be an important virulence factor and MsrB probably plays a balancing act to counter the effect of MsrA1 in S. aureus.This work was supported in part by a Warner/Fermaturo grant and A.T. Still University Board of Trustees Research Funds, by grant 1R15AI090680-01 from the National Institutes of Health to VKS, and grants from the Kirksville College of Osteopathic Medicine Biomedical Sciences Graduate Program to TRJ and KRB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Seizures, ataxia and parvalbumin-expressing interneurons respond to selenium supply in Selenop-deficient mice

    Get PDF
    Mice with constitutive disruption of the Selenop gene have been key to delineate the importance of selenoproteins in neurobiology. However, the phenotype of this mouse model is exquisitely dependent on selenium supply and timing of selenium supplementation. Combining biochemical, histological, and behavioral methods, we tested the hypothesis that parvalbumin-expressing interneurons in the primary somatosensory cortex and hippocampus depend on dietary selenium availability in Selenop−/− mice. Selenop-deficient mice kept on adequate selenium diet (0.15 mg/kg, i.e. the recommended dietary allowance, RDA) developed ataxia, tremor, and hyperexcitability between the age of 4–5 weeks. Video-electroencephalography demonstrated epileptic seizures in Selenop−/− mice fed the RDA diet, while Selenop ± heterozygous mice behaved normally. Both neurological phenotypes, hyperexcitability/seizures and ataxia/dystonia were successfully prevented by selenium supplementation from birth or transgenic expression of human SELENOP under a hepatocyte-specific promoter. Selenium supplementation with 10 ÎŒM selenite in the drinking water on top of the RDA diet increased the activity of glutathione peroxidase in the brains of Selenop−/− mice to control levels. The effects of selenium supplementation on the neurological phenotypes were dose- and time-dependent. Selenium supplementation after weaning was apparently too late to prevent ataxia/dystonia, while selenium withdrawal from rescued Selenop−/− mice eventually resulted in ataxia. We conclude that SELENOP expression is essential for preserving interneuron survival under limiting Se supply, while SELENOP appears dispensable under sufficiently high Se status

    Variation in MSRA Modifies Risk of Neonatal Intestinal Obstruction in Cystic Fibrosis

    Get PDF
    Meconium ileus (MI), a life-threatening intestinal obstruction due to meconium with abnormal protein content, occurs in approximately 15 percent of neonates with cystic fibrosis (CF). Analysis of twins with CF demonstrates that MI is a highly heritable trait, indicating that genetic modifiers are largely responsible for this complication. Here, we performed regional family-based association analysis of a locus that had previously been linked to MI and found that SNP haplotypes 5â€Č to and within the MSRA gene were associated with MI (P = 1.99×10−5 to 1.08×10−6; Bonferroni P = 0.057 to 3.1×10−3). The haplotype with the lowest P value showed association with MI in an independent sample of 1,335 unrelated CF patients (OR = 0.72, 95% CI [0.53–0.98], P = 0.04). Intestinal obstruction at the time of weaning was decreased in CF mice with Msra null alleles compared to those with wild-type Msra resulting in significant improvement in survival (P = 1.2×10−4). Similar levels of goblet cell hyperplasia were observed in the ilea of the Cftr−/− and Cftr−/−Msra−/− mice. Modulation of MSRA, an antioxidant shown to preserve the activity of enzymes, may influence proteolysis in the developing intestine of the CF fetus, thereby altering the incidence of obstruction in the newborn period. Identification of MSRA as a modifier of MI provides new insight into the biologic mechanism of neonatal intestinal obstruction caused by loss of CFTR function

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia:design, results and future prospects

    Get PDF

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects

    Get PDF
    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.Peer reviewe

    Genetic association study of childhood aggression across raters, instruments, and age

    Get PDF
    Childhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association metaanalysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included. We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e., within rater, instrument and age. SNP-heritability for the overall meta-analysis AGGoverall was 3.31% (SE= 0.0038). We found no genome-wide significant SNPs for AGGoverall. The gene-based analysis returned three significant genes: ST3GAL3 (P= 1.6E-06), PCDH7 (P= 2.0E-06), and IPO13 (P= 2.5E-06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained = 0.20%). Genetic correlations rg among rater-specific assessment of AGG ranged from rg= 0.46 between self- and teacher-assessment to rg= 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range |rg|: 0.19-1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (rg=∌-0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range |rg| : 0.46-0.60). The genetic correlations between aggression and psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater-specific genetic etiology of AGG.</p
    • 

    corecore