55 research outputs found

    Randomized placebo-controlled trial assessing the effect of 24-week fenofibrate therapy on circulating markers of abdominal aortic aneurysm: Outcomes from the FAME-2 trial

    Get PDF
    Background-There is no drug therapy for abdominal aortic aneurysm (AAA). FAME-2 (Fenofibrate in the Management of Abdominal Aortic Aneurysm 2) was a placebo-controlled randomized trial designed to assess whether administration of 145 mg of fenofibrate/d for 24 weeks favorably modified circulating markers of AAA. Methods and Results-Patients with AAAs measuring 35 to 49 mm and no contraindication were randomized to fenofibrate or identical placebo. The primary outcome measures were the differences in serum osteopontin and kallistatin concentrations between groups. Secondary analyses compared changes in the circulating concentration of AAA-associated proteins, and AAA growth, between groups using multivariable linear mixed-effects modeling. A total of 140 patients were randomized to receive fenofibrate (n=70) or placebo (n=70). By the end of the study 3 (2.1%) patients were lost to follow-up and 18 (12.9%) patients had ceased trial medication. A total of 85% of randomized patients took =80% of allocated tablets and were deemed to have complied with the medication regimen. Patients’ allocated fenofibrate had expected reductions in serum triglycerides and estimated glomerular filtration rate, and increases in serum homocysteine. No differences in serum osteopontin, kallistatin, or AAA growth were observed between groups. Conclusions-Administering 145 mg/d of fenofibrate for 24 weeks did not significantly reduce serum concentrations of osteopontin and kallistatin concentrations, or rates of AAA growth in this trial. The findings do not support the likely benefit of fenofibrate as a treatment for patients with small AAAs. Clinical Trial Registration-URL: www.anzctr.org.au. Unique identifier: ACTRN12613001039774

    Phonons and related properties of extended systems from density-functional perturbation theory

    Full text link
    This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic

    A modified Ehrenfest formalism for efficient large-scale ab initio molecular dynamics

    Get PDF
    We present in detail the recently derived ab-initio molecular dynamics (AIMD) formalism [Phys. Rev. Lett. 101 096403 (2008)], which due to its numerical properties, is ideal for simulating the dynamics of systems containing thousands of atoms. A major drawback of traditional AIMD methods is the necessity to enforce the orthogonalization of the wave-functions, which can become the bottleneck for very large systems. Alternatively, one can handle the electron-ion dynamics within the Ehrenfest scheme where no explicit orthogonalization is necessary, however the time step is too small for practical applications. Here we preserve the desirable properties of Ehrenfest in a new scheme that allows for a considerable increase of the time step while keeping the system close to the Born-Oppenheimer surface. We show that the automatically enforced orthogonalization is of fundamental importance for large systems because not only it improves the scaling of the approach with the system size but it also allows for an additional very efficient parallelization level. In this work we provide the formal details of the new method, describe its implementation and present some applications to some test systems. Comparisons with the widely used Car-Parrinello molecular dynamics method are made, showing that the new approach is advantageous above a certain number of atoms in the system. The method is not tied to a particular wave-function representation, making it suitable for inclusion in any AIMD software package.Comment: 28 pages, 5 figures, published in a special issue of J. Chem. Theory Comp. in honour of John Perde

    Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale crater, Mars

    Get PDF
    H₂O, CO₂, SO₂, O₂, H₂, H₂S, HCl, chlorinated hydrocarbons, NO and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H₂O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO₂. Concurrent evolution of O₂ and chlorinated hydrocarbons suggest the presence of oxychlorine phase(s). Sulfides are likely sources for S-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic C sources may be preserved in the mudstone; however, the C source for the chlorinated hydrocarbons is not definitively of martian origin

    Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    Sedimentary rocks at Yellowknife Bay (Gale Crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 Å indicating little interlayer hydration. The Cumberland smectite has basal spacing at ~13.2 Å as well as ~10 Å. The ~13.2 Å spacing suggests a partially chloritized interlayer or interlayer Mg or Ca facilitating H_2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time

    A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    The Curiosity rover discovered fine-grained sedimentary rocks, inferred to represent an ancient lake, preserve evidence of an environment that would have been suited to support a Martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. C, H, O, S, N, and P were measured directly as key biogenic elements, and by inference N and P are assumed to have been available. The environment likely had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars

    The Petrochemistry of Jake_M: A Martian Mugearite

    Get PDF
    “Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes)

    X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater

    Get PDF
    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe^(3+)- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii
    corecore