49 research outputs found

    Multiple promoters are a common feature of mitochondrial genes in Arabidopsis

    Get PDF
    Mitochondrial genes in the plant Arabidopsis thaliana are transcribed by two phage-type RNA polymerases encoded in the nucleus. Little is known about cis-elements that are recognized by these enzymes and mediate the transcription of the Arabidopsis mitochondrial genome. Here, 30 transcription initiation sites of 12 mitochondrial genes and gene clusters have been determined using 5′-RACE and ribonuclease protection analysis of primary transcripts labelled in vitro by guanylyltransferase. A total of 9 out of 12 genes were found to possess multiple promoters, revealing for the first time that multiple promoters are a common feature of mitochondrial genes in a dicotyledonous plant. No differences in promoter utilization were observed between leaves and flowers, suggesting that promoter multiplicity reflects a relaxed promoter specificity rather than a regulatory role of promoter selection. Nearly half the identified transcription initiation sites displayed immediately upstream a CRTA core sequence, which was mostly seen within the previously described CRTAAGAGA promoter motif or a novel CGTATATAA promoter element. About as many promoters possessed an ATTA or RGTA core. Our data indicate that the majority of mitochondrial promoters in Arabidopsis deviate significantly from the nonanucleotide consensus derived earlier for dicot mitochondrial promoters

    Vertex elimination orderings for hereditary graph classes

    Full text link
    We provide a general method to prove the existence and compute efficiently elimination orderings in graphs. Our method relies on several tools that were known before, but that were not put together so far: the algorithm LexBFS due to Rose, Tarjan and Lueker, one of its properties discovered by Berry and Bordat, and a local decomposition property of graphs discovered by Maffray, Trotignon and Vu\vskovi\'c. We use this method to prove the existence of elimination orderings in several classes of graphs, and to compute them in linear time. Some of the classes have already been studied, namely even-hole-free graphs, square-theta-free Berge graphs, universally signable graphs and wheel-free graphs. Some other classes are new. It turns out that all the classes that we study in this paper can be defined by excluding some of the so-called Truemper configurations. For several classes of graphs, we obtain directly bounds on the chromatic number, or fast algorithms for the maximum clique problem or the coloring problem

    Clique cutsets beyond chordal graphs

    Get PDF
    Truemper configurations (thetas, pyramids, prisms, and wheels) have played an important role in the study of complex hereditary graph classes (e.g. the class of perfect graphs and the class of even-hole-free graphs), appearing both as excluded configurations, and as configurations around which graphs can be decomposed. In this paper, we study the structure of graphs that contain (as induced subgraphs) no Truemper configurations other than (possibly) universal wheels and twin wheels. We also study several subclasses of this class. We use our structural results to analyze the complexity of the recognition, maximum weight clique, maximum weight stable set, and optimal vertex coloring problems for these classes. We also obtain polynomial χ-bounding functions for these classes

    Volcanic Flank Collapse, Secondary Sediment Failure and Flow‐Transition:Multi‐Stage Landslide Emplacement Offshore Montserrat, Lesser Antilles

    Get PDF
    Volcanic flank collapses, especially those in island settings, have generated some of the most voluminous mass transport deposits on Earth and can trigger devastating tsunamis. Reliable tsunami hazard assessments for flank collapse‐driven tsunamis require an understanding of the complex emplacement processes involved. The seafloor sequence southeast of Montserrat (Lesser Antilles) is a key site for the study of volcanic flank collapse emplacement processes that span subaerial to submarine environments. Here, we present new 2D and 3D seismic data as well as MeBo drill core data from one of the most extensive mass transport deposits offshore Montserrat, which exemplifies multi‐phase landslide deposition from volcanic islands. The deposits reveal emplacement in multiple stages including two blocky volcanic debris avalanches, secondary seafloor failure and a late‐stage erosive density current that carved channel‐like incisions into the hummocky surface of the deposit about 15 km from the source region. The highly erosive density current potentially originated from downslope‐acceleration of fine‐grained material that was suspended in the water column earlier during the slide. Late‐stage erosive turbidity currents may be a more common process following volcanic sector collapse than has been previously recognized, exerting a potentially important control on the observed deposit morphology as well as on the runout and the overall shape of the deposit

    The life of plant mitochondrial complex I

    Get PDF
    The mitochondrial NADH dehydrogenase complex (complex I) of the respiratory chain has several remarkable features in plants: (i) particularly many of its subunits are encoded by the mitochondrial genome, (ii) its mitochondrial transcripts undergo extensive maturation processes (e.g. RNA editing, trans-splicing), (iii) its assembly follows unique routes, (iv) it includes an additional functional domain which contains carbonic anhydrases and (v) it is, indirectly, involved in photosynthesis. Comprising about 50 distinct protein subunits, complex I of plants is very large. However, an even larger number of proteins are required to synthesize these subunits and assemble the enzyme complex. This review aims to follow the complete "life cycle" of plant complex I from various molecular perspectives. We provide arguments that complex I represents an ideal model system for studying the interplay of respiration and photosynthesis, the cooperation of mitochondria and the nucleus during organelle biogenesis and the evolution of the mitochondrial oxidative phosphorylation system. © 2014 Elsevier B.V

    Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation

    Get PDF
    Plants evolved efficient multifaceted acclimation strategies to cope with low temperatures. Chloroplasts respond to temperature stimuli and participate in temperature sensing and acclimation. However, very little is known about the involvement of chloroplast genes and their expression in plant chilling tolerance. Here we systematically investigated cold acclimation in tobacco seedlings over 2 days of exposure to low temperatures by examining responses in chloroplast genome copy number, transcript accumulation and translation, photosynthesis, cell physiology, and metabolism. Our time-resolved genome-wide investigation of chloroplast gene expression revealed substantial cold-induced translational regulation at both the initiation and elongation levels, in the virtual absence of changes at the transcript level. These cold-triggered dynamics in chloroplast translation are widely distinct from previously described high light-induced effects. Analysis of the gene set responding significantly to the cold stimulus suggested nonessential plastid-encoded subunits of photosynthetic protein complexes as novel players in plant cold acclimation. Functional characterization of one of these cold-responsive chloroplast genes by reverse genetics demonstrated that the encoded protein, the small cytochrome b6f complex subunit PetL, crucially contributes to photosynthetic cold acclimation. Together, our results uncover an important, previously underappreciated role of chloroplast translational regulation in plant cold acclimation

    A Nested Case-Control Study of Metabolically Defined Body Size Phenotypes and Risk of Colorectal Cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC).

    Get PDF
    BACKGROUND: Obesity is positively associated with colorectal cancer. Recently, body size subtypes categorised by the prevalence of hyperinsulinaemia have been defined, and metabolically healthy overweight/obese individuals (without hyperinsulinaemia) have been suggested to be at lower risk of cardiovascular disease than their metabolically unhealthy (hyperinsulinaemic) overweight/obese counterparts. Whether similarly variable relationships exist for metabolically defined body size phenotypes and colorectal cancer risk is unknown. METHODS AND FINDINGS: The association of metabolically defined body size phenotypes with colorectal cancer was investigated in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolic health/body size phenotypes were defined according to hyperinsulinaemia status using serum concentrations of C-peptide, a marker of insulin secretion. A total of 737 incident colorectal cancer cases and 737 matched controls were divided into tertiles based on the distribution of C-peptide concentration amongst the control population, and participants were classified as metabolically healthy if below the first tertile of C-peptide and metabolically unhealthy if above the first tertile. These metabolic health definitions were then combined with body mass index (BMI) measurements to create four metabolic health/body size phenotype categories: (1) metabolically healthy/normal weight (BMI < 25 kg/m2), (2) metabolically healthy/overweight (BMI ≥ 25 kg/m2), (3) metabolically unhealthy/normal weight (BMI < 25 kg/m2), and (4) metabolically unhealthy/overweight (BMI ≥ 25 kg/m2). Additionally, in separate models, waist circumference measurements (using the International Diabetes Federation cut-points [≥80 cm for women and ≥94 cm for men]) were used (instead of BMI) to create the four metabolic health/body size phenotype categories. Statistical tests used in the analysis were all two-sided, and a p-value of <0.05 was considered statistically significant. In multivariable-adjusted conditional logistic regression models with BMI used to define adiposity, compared with metabolically healthy/normal weight individuals, we observed a higher colorectal cancer risk among metabolically unhealthy/normal weight (odds ratio [OR] = 1.59, 95% CI 1.10-2.28) and metabolically unhealthy/overweight (OR = 1.40, 95% CI 1.01-1.94) participants, but not among metabolically healthy/overweight individuals (OR = 0.96, 95% CI 0.65-1.42). Among the overweight individuals, lower colorectal cancer risk was observed for metabolically healthy/overweight individuals compared with metabolically unhealthy/overweight individuals (OR = 0.69, 95% CI 0.49-0.96). These associations were generally consistent when waist circumference was used as the measure of adiposity. To our knowledge, there is no universally accepted clinical definition for using C-peptide level as an indication of hyperinsulinaemia. Therefore, a possible limitation of our analysis was that the classification of individuals as being hyperinsulinaemic-based on their C-peptide level-was arbitrary. However, when we used quartiles or the median of C-peptide, instead of tertiles, as the cut-point of hyperinsulinaemia, a similar pattern of associations was observed. CONCLUSIONS: These results support the idea that individuals with the metabolically healthy/overweight phenotype (with normal insulin levels) are at lower colorectal cancer risk than those with hyperinsulinaemia. The combination of anthropometric measures with metabolic parameters, such as C-peptide, may be useful for defining strata of the population at greater risk of colorectal cancer

    Coffee and tea drinking in relation to the risk of differentiated thyroid carcinoma: results from the European Prospective Investigation into Cancer and Nutrition (EPIC) study.

    Get PDF
    PURPOSE: Coffee and tea constituents have shown several anti-carcinogenic activities in cellular and animal studies, including against thyroid cancer (TC). However, epidemiological evidence is still limited and inconsistent. Therefore, we aimed to investigate this association in a large prospective study. METHODS: The study was conducted in the EPIC (European Prospective Investigation into Cancer and Nutrition) cohort, which included 476,108 adult men and women. Coffee and tea intakes were assessed through validated country-specific dietary questionnaires. RESULTS: During a mean follow-up of 14 years, 748 first incident differentiated TC cases (including 601 papillary and 109 follicular TC) were identified. Coffee consumption (per 100 mL/day) was not associated either with total differentiated TC risk (HRcalibrated 1.00, 95% CI 0.97-1.04) or with the risk of TC subtypes. Tea consumption (per 100 mL/day) was not associated with the risk of total differentiated TC (HRcalibrated 0.98, 95% CI 0.95-1.02) and papillary tumor (HRcalibrated 0.99, 95% CI 0.95-1.03), whereas an inverse association was found with follicular tumor risk (HRcalibrated 0.90, 95% CI 0.81-0.99), but this association was based on a sub-analysis with a small number of cancer cases. CONCLUSIONS: In this large prospective study, coffee and tea consumptions were not associated with TC risk.Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (United Kingdom)
    corecore