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Clique cutsets beyond chordal graphs
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School of Computing, University of Leeds, Leeds LS2 9JT, UK.

Abstract

Truemper configurations (thetas, pyramids, prisms, and wheels) have played an
important role in the study of complex hereditary graph classes (e.g. the class of
perfect graphs and the class of even-hole-free graphs), appearing both as excluded
configurations, and as configurations around which graphs can be decomposed. In
this paper, we study the structure of graphs that contain (as induced subgraphs) no
Truemper configurations other than (possibly) universal wheels and twin wheels.
We also study several subclasses of this class. We use our structural results to
analyze the complexity of the recognition, maximum weight clique, maximum weight
stable set, and optimal vertex coloring problems for these classes. We also obtain
polynomial χ-bounding functions for these classes.
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1 Introduction

All graphs that we consider are finite, simple, and nonnull. We use standard
terminology and notation. Given graphs G and H, we say that G is H-free if
G does not contain (an isomorphic copy of) H as an induced subgraph. Given
a family H of graphs, we say that a graph G is H-free if G is H-free for all
H 2 H. A class of graphs is hereditary if it is closed under induced subgraphs.
A hole in a graph is an induced cycle of length at least four. A chordal graph
is a graph that contains no holes.

Configurations known as thetas, pyramids, prisms, and wheels (defined
below) have played an important role in the study of such diverse (and impor-
tant) classes as the classes of regular matroids, balanceable matrices, perfect
graphs, and even-hole-free graphs (for a survey, see [6]). These configurations
are also called Truemper configurations, as they appear in a theorem due to
Truemper [5] that characterizes graphs whose edges can be labeled so that all
chordless cycles have prescribed parities.

A theta is any subdivision of the complete bipartite graph K2,3. A pyra-
mid is any subdivision of the complete graph K4 in which one triangle remains
unsubdivided, and of the remaining three edges, at least two edges are subdi-
vided at least once. A prism is any subdivision of C6 in which the two triangles
remain unsubdivided. A 3-path-configuration (or 3PC for short) is any theta,
pyramid, or prism (see Fig. 1). A wheel (H, x) is a graph that consists of a
hole H and a vertex x that has at least three neighbors in V (H). A universal
wheel is a wheel (H, x) such that x is adjacent to all vertices in V (H). A twin
wheel is a wheel (H, x) such that x has precisely three neighbors in V (H), and
those neighbors are consecutive vertices of H. A proper wheel is a wheel that is
neither a universal wheel nor a twin wheel. A cap is a graph that consists of a
chordless cycle of length at least four and a vertex adjacent to two consecutive
vertices of the cycle (and to no other vertices of the cycle).

Here, we are interested in the hereditary classes GUT , GU , GT , and Gcap−free
UT ,

defined as follows. GUT is the class of all (3PC, proper wheel)-free graphs (so
the only Truemper configurations that graphs in GUT may contain are universal
wheels and twin wheels); GU is the class of all (3PC, proper wheel, twin wheel)-
free graphs; GT is the class of all (3PC, proper wheel, universal wheel)-free
graphs; and Gcap−free

UT is the class of all (3PC, proper wheel, cap)-free graphs.
Clearly, GU , GT , and Gcap−free

UT are proper subclasses of GUT ; furthermore, the
class of chordal graphs is a proper subclass of each of these four classes.

We first obtain decomposition theorems for the classes GUT , GU , GT , and
Gcap−free
UT , and then we use these theorems to analyze the complexity of the



Fig. 1. Theta, pyramid and prism. (A full line represents an edge, and a dashed
line represents a path of edge-length at least one.)

recognition, maximum clique, maximum stable set, and optimal vertex color-
ing problems for the four classes, as well as to give polynomial χ-bounding
functions for these classes. In Section 2, we give all the necessary definitions,
and in Section 3, we state and discuss our results.

2 Definitions

As usual, the chromatic number of a graph G is denoted by χ(G). An optimal
coloring of G is a proper vertex coloring of G that uses precisely χ(G) colors.
A clique (resp. stable set) of a graph G is a set of pairwise adjacent (resp.
nonadjacent) vertices of G. The clique number (i.e. the maximum size of a
clique) of G is denoted by ω(G), and the stability number (i.e. the maximum
size of a stable set) of G is denoted by α(G). A maximum clique (resp. maxi-
mum stable set) of a graph G is a clique (resp. stable set) of G that is of size
ω(G) (resp. α(G)). A weighted graph is an ordered pair (G,w), where G is
a graph and w : V (G) ! R is a weight function for G; a maximum weight
clique and a maximum weight stable set of a weighted graph are defined in
the obvious way. A hereditary class G is χ-bounded if there exists a function
f : N ! N (called a χ-bounding function for G) such that every graph G 2 G
satisfies χ(G)  f(ω(G)).

Given a graph G, a vertex x 2 V (G), and a set Y ✓ V (G)\{x}, we say that
x is complete (resp. anticomplete) to Y inG if x is adjacent (resp. nonadjacent)
to every vertex in Y . Given a graph G and disjoint sets X, Y ✓ V (G), we
say that X is complete (resp. anticomplete) to Y in G if every vertex in X is
complete (resp. anticomplete) to Y . The complement of a graph G is denoted
by G. An antihole in G is an induced subgraph of G whose complement is a
hole in G. A long hole (resp. long antihole) is a hole (resp. antihole) of length
at least five.

A hyperhole of length k ≥ 4 (or simply a hyperhole) is a graph H whose
vertex-set V (H) can be partitioned into k nonempty cliques, say X1, . . . , Xk

(with subscripts in Zk), such that for each i 2 Zk, Xi is a clique, complete
to Xi−1 [ Xi+1 and anticomplete to V (H) \ (Xi−1 [ Xi [ Xi+1). Similarly, a



hyperantihole of length k ≥ 4 (or simply a hyperantihole) is a graph A whose
vertex-set V (A) can be partitioned into k nonempty cliques, say X1, . . . , Xk

(with subscripts in Zk), such that for each i 2 Zk, Xi is anticomplete to
Xi−1 [Xi+1 and complete to V (A) \ (Xi−1 [Xi [Xi+1).

A ring of length k ≥ 4 (or simply a ring) is a graph R whose vertex set
can be partitioned into k nonempty sets, say X1, . . . , Xk (with subscripts in
Zk), such that for all i 2 Zk, Xi can be ordered as Xi = {ui

1, . . . , u
i
|Xi|

} so that

Xi ✓ NR[u
i
|Xi|

] ✓ . . . ✓ NR[x
i
1] = Xi−1[Xi[Xi+1. Note that every hyperhole

is a ring.

A cobipartite graph is the complement of a bipartite graph. A chordal
cobipartite graph is a graph that is both chordal and cobipartite. A clique
cutset of a graph G is a (possibly empty) clique C of G such that G \ C is
disconnected. A component of G is a maximal connected induced subgraph of
G, and an anticomponent of G is an induced subgraph of G whose complement
is a component of G. A component or anticomponent is trivial if it contains
just one vertex, and it is nontrivial if it contains at least two vertices.

3 Results

In this section, we state our results. We begin with our decomposition the-
orems for the classes GUT , GU , GT , and Gcap−free

UT . After that, we discuss our
algorithmic and χ-boundedness results for these four classes.

Theorem 3.1 Every graph G 2 GUT satisfies at least one of the following:

• G contains exactly one nontrivial anticomponent, and this anticomponent
is a ring of length at least five;

• G is (long hole, K2,3, C6)-free;

• α(G) = 2, and every anticomponent of G is either a hyperhole of length five
or a (long hole, C6)-free graph;

• G admits a clique cutset.

Theorem 3.2 Every graph G 2 GU satisfies at least one of the following:

• G has exactly one nontrivial anticomponent, and this anticomponent is a
hole of length at least five;

• all nontrivial anticomponents of G are isomorphic to K2;

• G admits a clique cutset.

Theorem 3.3 Every graph G 2 GT satisfies one of the following:



• G is a complete graph, a ring, or a hyperantihole of length seven;

• G admits a clique cutset.

Theorem 3.4 Every graph G 2 Gcap−free
UT satisfies at least one of the follow-

ing:

• G has exactly one nontrivial anticomponent, and this anticomponent is a
hyperhole of length at least six;

• each anticomponent of G is either a hyperhole of length five or a chordal
cobipartite graph;

• G admits a clique cutset.

We now turn to the algorithmic and χ-boundedness results for our four
classes of graphs. We consider the following four algorithmic problems:

• the recognition problem, i.e. the problem of determining whether an input
graph belongs to a given class;

• the maximum weight stable set problem (MWSSP), i.e. the problem of find-
ing a maximum weight stable set in an input weighted graph (with real
weights);

• the maximum weight clique problem (MWCP), i.e. the problem of finding a
maximum weight clique in an input weighted graph (with real weights);

• the optimal coloring problem (ColP), i.e. the problem of finding an optimal
coloring of an input graph.

We summarize our results in the table below. We note that all our algo-
rithms are robust, that is, they either produce a correct solution to the problem
in question for the input (weighted) graph, or they correctly determine that
the graph does not belong to the class under consideration.

recognition MWSSP MWCP ColP χ-bound.

GUT O(n6) ? NP-hard ? χ  2ω4

GU O(n3) O(n3) O(n3) O(n3) χ  ω + 1

GT O(n3) O(n4) O(n3) ? χ  b3

2
ωc

Gcap−free
UT O(n5) O(n3) O(n3) O(n3) χ  b3

2
ωc

We remark that we in fact show that the problem of finding the clique
number of a (long hole,K2,3, C6)-free graph is NP-hard (this easily follows from



an observation of Poljak [3]); since all such graphs belong to GUT , we deduce
that this problem (and consequently, the MWCP as well) is NP-hard for the
class GUT . We do not know whether the MWSSP and ColP are solvable in
polynomial time for (long hole,K2,3, C6)-free graphs. Further, our polynomial-
time algorithms are based on the decomposition theorems stated above, as well
as on Tarjan’s techniques for handling clique cutsets [4]. At this time, we do
not know the complexity of coloring graphs in the class GT ; this is because we
do not know whether rings of odd length can be colored in polynomial time.

It follows from [1] that the class of theta-free graphs is χ-bounded; conse-
quently, our four classes (classes GUT , GU , GT , and Gcap−free

UT ) are all χ-bounded.
Unfortunately, the χ-bounding function from [1] is superexponential. Using
our structural results, we obtain polynomial χ-bounding functions for our four
classes (as shown in the table above). The bound given for the class GU easily
follows from Theorem 3.2. Next, a simple argument shows that every ring R

satisfies χ(R)  b3

2
ω(R)c; together with Theorems 3.3 and 3.4, this yields the

bounds for the classes GT and Gcap−free
UT given in the table. Finally, we show

that every graph in the class GUT either is cap-free (and therefore belongs to
Gcap−free
UT ) or admits a “small” cutset (one whose size is bounded by a function

of the clique number); using our χ-bounding function for Gcap−free
UT , as well as

a result of [2], we obtain the χ-bounding function for GUT given in the table.
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