44 research outputs found

    Environmental Risk of Pesticides for Fish in Small- and Medium-Sized Streams of Switzerland.

    Get PDF
    This study assessed the acute and chronic risk of pesticides, singly and as mixtures, for fish using comprehensive chemical data of four monitoring studies conducted in small- and medium-sized streams of Switzerland between 2012 and 2018. Pesticides were ranked based on single substance risk quotients and relative contribution to mixture risk. Concentrations of the pyrethroid insecticides, λ-cyhalothrin, cypermethrin and deltamethrin, and the fungicides, carbendazim and fenpropimorph, posed acute or chronic single substance risks. Risk quotients of eighteen additional pesticides were equal or greater than 0.1, and thirteen of those contributed ≥30% to mixture risk. Relatively few substances dominated the mixture risk in most water samples, with chronic and acute maximum cumulative ratios never exceeding 5 and 7, respectively. A literature review of toxicity data showed that concentrations of several pesticides detected in Swiss streams were sufficient to cause direct sublethal effects on fish in laboratory studies. Based on the results of our study, we conclude that pesticides detected in Swiss streams, especially pyrethroid insecticides, fungicides and pesticide mixtures, pose a risk to fish health and can cause direct sublethal effects at environmental concentrations. Sensitive life stages of species with highly specialized life history traits may be particularly vulnerable; however, the lack of toxicity data for non-model species currently prevents a conclusive assessment across species

    Aquatic Fungi: A Disregarded Trophic Level in Ecological Risk Assessment of Organic Fungicides

    Get PDF
    Freshwater fungi are a diverse group of organisms and fulfill important functions in the food web dynamics of surface water ecosystems. Ascomycetic and basidiomycetic hyphomycetes play key roles in leaf litter breakdown in rivers and creeks, while parasitic chytrids are an important food source for small invertebrates in lakes. Field studies indicate that fungal communities are affected by fungicides at environmentally relevant concentrations. However, despite their ecological importance, freshwater fungi are currently not specifically addressed in the EU regulatory frameworks with respect to the protection of surface waters. Specifically, the prospective risk assessment of fungicides does not evaluate adverse effects on non-target aquatic fungi. This paper aims to describe important functions of freshwater fungi, provides an overview of adverse effect levels of fungicides on this organism group, and proposes to integrate the fungal community of freshwater ecosystems as an additional trophic level in the current fungicide risk assessment frameworks. Results of a literature review on the effects of fungicides on aquatic fungi revealed that information on the toxicity of fungicides to non-target aquatic fungi is limited. This is, in part, due to the lack of standardized bioassays using aquatic fungi as test species. Although there is an encouraging number of bioassays focusing on the degradation of dead organic material by hyphomycetes, studies on fungicide effects on other important ecological functions, like the control of algal blooms in lentic surface waters by parasitic chytrid fungi, or on mutualistic fungi living in the guts of aquatic arthropods are largely missing. Thus, the further development and standardized of different fungi bioassays is recommended

    Assessing the reliability of ecotoxicological studies : an overview of current needs and approaches

    Get PDF
    In general, reliable studies are well designed and well performed, and enough details on study design and performance are reported to assess the study. For hazard and risk assessment in various legal frameworks, many different types of ecotoxicity studies need to be evaluated for reliability. These studies vary in study design, methodology, quality, and level of detail reported (e.g., reviews, peer-reviewed research papers, or industry-sponsored studies documented under Good Laboratory Practice [GLP] guidelines). Regulators have the responsibility to make sound and verifiable decisions and should evaluate each study for reliability in accordance with scientific principles regardless of whether they were conducted in accordance with GLP and/or standardized methods. Thus, a systematic and transparent approach is needed to evaluate studies for reliability. In this paper, 8 different methods for reliability assessment were compared using a number of attributes: categorical versus numerical scoring methods, use of exclusion and critical criteria, weighting of criteria, whether methods are tested with case studies, domain of applicability, bias toward GLP studies, incorporation of standard guidelines in the evaluation method, number of criteria used, type of criteria considered, and availability of guidance material. Finally, some considerations are given on how to choose a suitable method for assessing reliability of ecotoxicity studies. Integr Environ Assess Manag 2017;13:640-651. (c) 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC

    Amphibians and plant-protection products: what research and action is needed?

    Get PDF
    Background: The majority of Swiss amphibians are threatened. There is a range of factors which have been discussed as possible causes for their decline, including plant protection products (PPPs). Results: The influence of PPPs on amphibian populations has not yet been studied to any great extent, neither for active ingredients nor for the wetting agents, breakdown products or tank mixtures. A further topic of discussion was how to better protect amphibians by reducing their exposure to PPPs in agricultural fields. Conclusion: Experts at a workshop concluded that further research is needed

    Aquatic exposures of chemical mixtures in urban environments: approaches to impact assessment

    Get PDF
    Urban regions of the world are expanding rapidly, placing additional stress on water resources. Urban water bodies serve many purposes from washing and sources of drinking water to transport and conduits for storm drainage and effluent discharge. These water bodies receive chemical emissions arising from either single or multiple point sources, diffuse sources which can be continuous, intermittent or seasonal. Thus, aquatic organisms in these water bodies are exposed to temporally and compositionally variable mixtures. We have delineated source-specific signatures of these mixtures for diffuse urban runoff and urban point source exposure scenarios to support risk assessment and management of these mixtures. The first step in a tiered approach to assessing chemical exposure has been developed based on the Event Mean Concentration concept with chemical concentrations in runoff defined by volumes of water leaving each surface and the chemical exposure mixture profiles for different urban scenarios. Although generalizations can be made about the chemical composition of urban sources and event mean exposure predictions for initial prioritization, such modelling needs to be complemented with biological monitoring data. It is highly unlikely that the current paradigm of routine regulatory chemical monitoring alone will provide a realistic appraisal of urban aquatic chemical mixture exposures. Future consideration is also needed on the role of non-chemical stressors in such highly modified urban water bodies

    Retaining young people in a longitudinal sexual health survey: a trial of strategies to maintain participation

    Get PDF
    <p>BACKGROUND:There is an increasing trend towards lower participation in questionnaire surveys. This reduces representativeness, increases costs and introduces particular challenges to longitudinal surveys, as researchers have to use complex statistical techniques which attempt to address attrition. This paper describes a trial of incentives to retain longitudinal survey cohorts from ages 16 to 20, to question them on the sensitive topic of sexual health.</p> <p>METHODS: A longitudinal survey was conducted with 8,430 eligible pupils from two sequential year groups from 25 Scottish schools. Wave 1 (14 years) and Wave 2 (16 years) were conducted largely within schools. For Wave 3 (18 years), when everyone had left school, the sample was split into 4 groups that were balanced across predictors of survey participation: 1) no incentive; 2) chance of winning one of twenty-five vouchers worth 20 pounds; 3) chance of winning one 500 pounds voucher; 4) a definite reward of a 10 pounds voucher sent on receipt of their completed questionnaire. Outcomes were participation at Wave 3 and two years later at Wave 4. Analysis used logistic regression and adjusted for clustering at school level.</p> <p>RESULTS: The only condition that had a significant and beneficial impact for pupils was to offer a definite reward for participation (Group 4). Forty-one percent of Group 4 participated in Wave 3 versus 27% or less for Groups 1 to 3. At Wave 4, 35% of Group 4 took part versus 25% or less for the other groups. Similarly, 22% of Group 4 participated in all four Waves of the longitudinal study, whereas for the other three groups it was 16% or less that participated in full.</p> <p>CONCLUSIONS: The best strategy for retaining all groups of pupils and one that improved retention at both age 18 and age 20 was to offer a definite reward for participation. This is expensive, however, given the many benefits of retaining a longitudinal sample, we recommend inclusion of this as a research cost for cohort and other repeat-contact studies.</p&gt

    The 2015 Annual Meeting of SETAC German Language Branch in Zurich (7-10 September, 2015): ecotoxicology and environmental chemistry-from research to application

    Get PDF
    This report provides a brief review of the 20th annual meeting of the German Language Branch of the Society of Environmental Toxicology and Chemistry (SETAC GLB) held from September 7th to 10th 2015 at ETH (Swiss Technical University) in Zurich, Switzerland. The event was chaired by Inge Werner, Director of the Swiss Centre for Applied Ecotoxicology (Ecotox Centre) Eawag-EPFL, and organized by a team from Ecotox Centre, Eawag, Federal Office of the Environment, Federal Office of Agriculture, and Mesocosm GmbH (Germany). Over 200 delegates from academia, public agencies and private industry of Germany, Switzerland and Austria attended and discussed the current state of science and its application presented in 75 talks and 83 posters. In addition, three invited keynote speakers provided new insights into scientific knowledge ‘brokering’, and—as it was the International Year of Soil—the important role of healthy soil ecosystems. Awards were presented to young scientists for best oral and poster presentations, and for best 2014 master and doctoral theses. Program and abstracts of the meeting (mostly in German) are provided as Additional file 1

    The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! [Commentary]

    Get PDF
    The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken
    corecore