14 research outputs found

    APOBEC3A intratumoral DNA electroporation in mice

    No full text
    International audienceHuman APOBEC3A (A3A) cytidine deaminase shows pro-apoptotic properties resulting from hypermutation of genomic DNA, induction of double-stranded DNA breaks (DSBs) and G1 cell cycle arrest. Given this, we evaluated the antitumor efficacy of A3A by intratumoral electroporation of an A3A expression plasmid. DNA was repeatedly electroporated into B16OVA, B16Luc tumors of C57BL/6J mice as well as the aggressive fibrosarcoma Sarc2 tumor of HLA-A*0201/DRB1*0101 transgenic mice using noninvasive plate electrodes. Intratumoral electroporation of A3A plasmid DNA resulted in regression of ~50% of small B16OVA melanoma tumors that did not rebound in the following 2 months without treatment. Larger or more aggressive tumors escaped regression when so treated. As APOBEC3A was much less efficient in provoking hypermutation and DSBs in B16OVA cells compared with human or quail cells, it is likely that APOBEC3A would be more efficient in a human setting than in a mouse model

    Strong antigen-specific T-cell immunity induced by a recombinant human TERT measles virus vaccine and amplified by a DNA/viral vector prime boost in IFNAR/CD46 mice

    No full text
    International audienceCancer immunotherapy is seeing an increasing focus on vaccination with tumor-associated antigens (TAAs). Human telomerase (hTERT) is a TAA expressed by most tumors to overcome telomere shortening. Tolerance to hTERT can be easily broken both naturally and experimentally and hTERT DNA vaccine candidates have been introduced in clinical trials. DNA prime/boost strategies have been widely developed to immunize efficiently against infectious diseases. We explored the use of a recombinant measles virus (MV) hTERT vector to boost DNA priming as recombinant live attenuated measles virus has an impressive safety and efficacy record. Here, we show that a MV-TERT vector can rapidly and strongly boost DNA hTERT priming in MV susceptible IFNAR/CD46 mouse models. The cellular immune responses were Th1 polarized. No humoral responses were elicited. The 4 kb hTERT transgene did not impact MV replication or induction of cell-mediated responses. These findings validate the MV-TERT vector to boost cell-mediated responses following DNA priming in humans
    corecore