70 research outputs found

    Modélisation numérique de la circulation côtière : application au transport des méduses dans les Pertuis Charentais

    Get PDF
    The Pertuis Charentais are an interconnected ecosystems site where ocean currents play a key role. A high resolution tidal model was developed in this thesis in order to understand the main features of the hydrodynamic flows inside the Pertuis. Two topics were put forward in this study. First, a new tide model for the Pertuis Charentais was build up and validated by using different datasets: tide gauge records, measurements of currents by ADCP and satellite images. A new approach to model calibration was developed by comparing the observed position of the waterline, the boundary between land and water, with that predicted by the model. Secondly, the transport and bloom-like aggregation of the Rhizostoma jellyfish populations were simulated numerically. The jellyfish proliferation and stranding are a source of socio-economic problems. Two types of jellyfish behavior, active and passive were simulated. The tidal currents and typical meteorological forcing were taken into account. The results show that the individual behavior of swimming jellyfish is an adaptive response to abiotic factors for jellyfish survival.Les Pertuis Charentais sont un site d’écosystèmes interconnectés où les courants marins jouent un rôle déterminant. Un modèle de marée à haute résolution a été développé au cours de cette thèse pour comprendre et cartographier les traits principaux de la circulation hydrodynamique dans les Pertuis. Deux axes sont ainsi mis en avant dans cette étude. D’abord, un nouveau modèle de marées dans les Pertuis Charentais a été construit et validé à partir de différentes sources : données marégraphiques, données de courantomètres ADCP et images satellitaires. Une nouvelle approche de calibration de modèle de marée a été développée, basée sur la comparaison de la position de la ligne d’eau, frontière entre l’eau et la terre, avec celle prédite par le modèle. Puis dans un second temps, le transport et les agrégations en « bloom » de populations de méduses Rhizostoma, dont les proliférations et les échouages sont à l’origine de problèmes socio-économiques, ont été simulés numériquement. Des observations in situ ont permis de paramétrer le comportement de nage des méduses dans le modèle. Deux types de comportements des méduses, actif et passif ont été simulés. Les courants de marées en présence des forçages-type météorologiques ont été pris en compte. Les résultats indiquent que le comportement individuel de nage des méduses pourrait être une réponse adaptative aux facteurs abiotiques qui menacent la continuité de leur espèce mais que les courants marins restent la cause première de la formation des blooms

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Numerical modeling of coastal circulation : application to the jellyfish transport in the Pertuis Charentais

    No full text
    Les Pertuis Charentais sont un site d’écosystèmes interconnectés où les courants marins jouent un rôle déterminant. Un modèle de marée à haute résolution a été développé au cours de cette thèse pour comprendre et cartographier les traits principaux de la circulation hydrodynamique dans les Pertuis. Deux axes sont ainsi mis en avant dans cette étude. D’abord, un nouveau modèle de marées dans les Pertuis Charentais a été construit et validé à partir de différentes sources : données marégraphiques, données de courantomètres ADCP et images satellitaires. Une nouvelle approche de calibration de modèle de marée a été développée, basée sur la comparaison de la position de la ligne d’eau, frontière entre l’eau et la terre, avec celle prédite par le modèle. Puis dans un second temps, le transport et les agrégations en « bloom » de populations de méduses Rhizostoma, dont les proliférations et les échouages sont à l’origine de problèmes socio-économiques, ont été simulés numériquement. Des observations in situ ont permis de paramétrer le comportement de nage des méduses dans le modèle. Deux types de comportements des méduses, actif et passif ont été simulés. Les courants de marées en présence des forçages-type météorologiques ont été pris en compte. Les résultats indiquent que le comportement individuel de nage des méduses pourrait être une réponse adaptative aux facteurs abiotiques qui menacent la continuité de leur espèce mais que les courants marins restent la cause première de la formation des blooms.The Pertuis Charentais are an interconnected ecosystems site where ocean currents play a key role. A high resolution tidal model was developed in this thesis in order to understand the main features of the hydrodynamic flows inside the Pertuis. Two topics were put forward in this study. First, a new tide model for the Pertuis Charentais was build up and validated by using different datasets: tide gauge records, measurements of currents by ADCP and satellite images. A new approach to model calibration was developed by comparing the observed position of the waterline, the boundary between land and water, with that predicted by the model. Secondly, the transport and bloom-like aggregation of the Rhizostoma jellyfish populations were simulated numerically. The jellyfish proliferation and stranding are a source of socio-economic problems. Two types of jellyfish behavior, active and passive were simulated. The tidal currents and typical meteorological forcing were taken into account. The results show that the individual behavior of swimming jellyfish is an adaptive response to abiotic factors for jellyfish survival

    Current-oriented swimming by jellyfish and its role in bloom maintenance

    Get PDF
    International audienceCross-flows (winds or currents) affect animal movements [ 1–3 ]. Animals can temporarily be carried off course or permanently carried away from their preferred habitat by drift depending on their own traveling speed in relation to that of the flow [ 1 ]. Animals able to only weakly fly or swim will be the most impacted (e.g., [ 4 ]). To circumvent this problem, animals must be able to detect the effects of flow on their movements and respond to it [ 1, 2 ]. Here, we show that a weakly swimming organism, the jellyfish Rhizostoma octopus, can orientate its movements with respect to currents and that this behavior is key to the maintenance of blooms and essential to reduce the probability of stranding. We combined in situ observations with first-time deployment of accelerometers on free-ranging jellyfish and simulated the behavior observed in wild jellyfish within a high-resolution hydrodynamic model. Our results show that jellyfish can actively swim countercurrent in response to current drift, leading to significant life-history benefits, i.e., increased chance of survival and facilitated bloom formation. Current-oriented swimming may be achieved by jellyfish either directly detecting current shear across their body surface [ 5 ] or indirectly assessing drift direction using other cues (e.g., magnetic, infrasound). Our coupled behavioral-hydrodynamic model provides new evidence that current-oriented swimming contributes to jellyfish being able to form aggregations of hundreds to millions of individuals for up to several months, which may have substantial ecosystem and socioeconomic consequences [ 6, 7 ]. It also contributes to improve predictions of jellyfish blooms’ magnitude and movements in coastal waters

    Long-term outcome of 32 patients with chorea and systemic lupus erythematosus or antiphospholipid antibodies.

    No full text
    International audienceOBJECTIVE: The aim of this work was to describe chorea during systemic lupus erythematosus or antiphospholipid antibodies and its long-term outcome. METHODS: We retrospectively analyzed clinical features, laboratory findings, imaging characteristics, and outcome in a series of 32 patients. RESULTS: Most patients were women (28 of 32), and mean age at onset of chorea was 20.6 (9-62) years. Chorea was inaugural for 28 patients. Improvement was observed with various treatments. During follow-up (12.2 ± 11.3 years), severe manifestations of systemic lupus erythematosus were rare. Antiphospholipid antibodies were repeatedly positive for 90% of the patients. Twelve patients developed arterial thrombosis. Prophylactic treatment with antithrombotic therapy might reduce the risk of further thrombosis (8% versus 57%; P = 0.01). Cardiac valvulopathy occurred in 22 patients during follow-up. Chorea relapsed in 8 cases. CONCLUSIONS: Chorea had a good outcome in itself. This long-term follow-up shows, for the first time, that these patients have substantial risk for further arterial thrombosis

    Key Features of Intertidal Food Webs That Support Migratory Shorebirds

    Get PDF
    International audienceThe migratory shorebirds of the East Atlantic flyway land in huge numbers during a migratory stopover or wintering on the French Atlantic coast. The Brouage bare mudflat (Marennes-Oléron Bay, NE Atlantic) is one of the major stopover sites in France. The particular structure and function of a food web affects the efficiency of carbon transfer. The structure and functioning of the Brouage food web is crucial for the conservation of species landing within this area because it provides sufficient food, which allows shorebirds to reach the north of Europe where they nest. The aim of this study was to describe and understand which food web characteristics support nutritional needs of birds. Two food-web models were constructed, based on in situ measurements that were made in February 2008 (the presence of birds) and July 2008 (absence of birds). To complete the models, allometric relationships and additional data from the literature were used. The missing flow values of the food web models were estimated by Monte Carlo Markov Chain – Linear Inverse Modelling. The flow solutions obtained were used to calculate the ecological network analysis indices, which estimate the emergent properties of the functioning of a food-web

    Hydroxychloroquine-induced pigmentation in patients with systemic lupus erythematosus: a case-control study.

    No full text
    International audienceIMPORTANCE: Hydroxychloroquine-induced pigmentation is not a rare adverse effect. Our data support the hypothesis that hydroxychloroquine-induced pigmentation is secondary to ecchymosis or bruising. OBJECTIVE: To describe the clinical features and outcome of hydroxychloroquine (HCQ)-induced pigmentation in patients with systemic lupus erythematosus (SLE). DESIGN, SETTING, AND PARTICIPANTS: In a case-control study conducted at a French referral center for SLE and antiphospholipid syndrome, 24 patients with SLE, with a diagnosis of HCQ-induced pigmentation, were compared with 517 SLE controls treated with HCQ. MAIN OUTCOMES AND MEASURES: The primary outcome was the clinical features of HCQ-induced pigmentation. Skin biopsies were performed on 5 patients, both in healthy skin and in the pigmented lesions. The statistical associations of HCQ-induced pigmentation with several variables were calculated using univariate and multivariate analyses. RESULTS: Among the 24 patients, skin pigmentation appeared after a median HCQ treatment duration of 6.1 years (range, 3 months-22 years). Twenty-two patients (92%) reported that the appearance of pigmented lesions was preceded by the occurrence of ecchymotic areas, which gave way to a localized blue-gray or brown pigmentation that persisted. Twenty-three patients (96%) had at least 1 condition predisposing them to easy bruising. Results from skin biopsies performed on 5 patients showed that the median concentration of iron was significantly higher in biopsy specimens of pigmented lesions compared with normal skin (4115 vs 413 nmol/g; P < .001). Using multivariate logistic regression, we found that HCQ-induced pigmentation was independently associated with previous treatment with oral anticoagulants and/or antiplatelet agents and with higher blood HCQ concentration. CONCLUSIONS AND RELEVANCE: Hydroxychloroquine-induced pigmentation is not a rare adverse effect of HCQ. Our data support the hypothesis that HCQ-induced pigmentation is secondary to ecchymosis or bruising
    corecore