1,056 research outputs found

    Sequence and structure of the mouse gene coding for the largest neurofilament subunit.

    Get PDF
    We have determined the complete nucleotide sequence of the mouse gene encoding the neurofilament NF-H protein. The C-terminal domain of NF-H is very rich in charged amino acids (aa) and contains a 3-aa sequence, Lys-Ser-Pro, that is repeated 51 times within a stretch of 368 aa. The location of this serine-rich repeat in the phosphorylated domain of NF-H indicates that it represents the major protein kinase recognition site. The nfh gene shares two common intron positions with the nfl and nfm genes, but has an additional intron that occurs at a location equivalent to one of the introns in non-neuronal intermediate filament-coding genes. This additional nfh intron may have been acquired via duplication of a primordial intermediate filament gene

    Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Get PDF
    The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed "community targets") that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations.(Abridged)Comment: This is a white paper that originated from an open discussion at the Enabling Transiting Exoplanet Science with JWST workshop held November 16 - 18, 2015 at STScI (http://www.stsci.edu/jwst/science/exoplanets). Accepted for publication in PAS

    Ablation of Proliferating Cells in the CNS Exacerbates Motor Neuron Disease Caused by Mutant Superoxide Dismutase

    Get PDF
    Proliferation of glia and immune cells is a common pathological feature of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here, to investigate the role of proliferating cells in motor neuron disease, SOD1G93A transgenic mice were treated intracerebroventicularly (ICV) with the anti-mitotic drug cytosine arabinoside (Ara-C). ICV delivery of Ara-C accelerated disease progression in SOD1G93A mouse model of ALS. Ara-C treatment caused substantial decreases in the number of microglia, NG2+ progenitors, Olig2+ cells and CD3+ T cells in the lumbar spinal cord of symptomatic SOD1G93A transgenic mice. Exacerbation of disease was also associated with significant alterations in the expression inflammatory molecules IL-1β, IL-6, TGF-β and the growth factor IGF-1

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease

    Get PDF
    Background & Aims: Obesity-associated inflammation is a key player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the role of macrophage scavenger receptor 1 (MSR1, CD204) remains incompletely understood. Methods: A total of 170 NAFLD liver biopsies were processed for transcriptomic analysis and correlated with clinicopathological features. Msr1(-/-) and wild-type mice were subjected to a 16-week high-fat and high-cholesterol diet. Mice and ex vivo human liver slices were treated with a monoclonal antibody against MSR1. Genetic susceptibility was assessed using genome-wide association study data from 1,483 patients with NAFLD and 430,101 participants of the UK Biobank. Results: MSR1 expression was associated with the occurrence of hepatic lipid-laden foamy macrophages and correlated with the degree of steatosis and steatohepatitis in patients with NAFLD. Mice lacking Msr1 were protected against diet-induced metabolic disorder, showing fewer hepatic foamy macrophages, less hepatic inflammation, improved dyslipidaemia and glucose tolerance, and altered hepatic lipid metabolism. Upon induction by saturated fatty acids, MSR1 induced a pro-inflammatory response via the JNK signalling pathway. In vitro blockade of the receptor prevented the accumulation of lipids in primary macrophages which inhibited the switch towards a proinflammatory phenotype and the release of cytokines such as TNF-alpha Targeting MSR1 using monoclonal antibody therapy in an obesity-associated NAFLD mouse model and human liver slices resulted in the prevention of foamy macrophage formation and inflammation. Moreover, we identified that rs41505344, a polymorphism in the upstream transcriptional region of MSR1, was associated with altered serum triglycerides and aspartate aminotransferase levels in a cohort of over 400,000 patients. Conclusions: Taken together, our data suggest that MSR1 plays a critical role in lipid-induced inflammation and could thus be a potential therapeutic target for the treatment of NAFLD. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease primarily caused by excessive consumption of fat and sugar combined with a lack of exercise or a sedentary lifestyle. Herein, we show that the macrophage scavenger receptor MSR1, an innate immune receptor, mediates lipid uptake and accumulation in Kupffer cells, resulting in liver inflammation and thereby promoting the progression of NAFLD in humans and mice. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.Peer reviewe

    Prediction of the intestinal resistome by a three-dimensional structure-based method

    Get PDF
    The intestinal microbiota is considered to be a major reservoir of antibiotic resistance determinants (ARDs) that could potentially be transferred to bacterial pathogens via mobile genetic elements. Yet, this assumption is poorly supported by empirical evidence due to the distant homologies between known ARDs (mostly from culturable bacteria) and ARDs from the intestinal microbiota. Consequently, an accurate census of intestinal ARDs (that is, the intestinal resistome) has not yet been fully determined. For this purpose, we developed and validated an annotation method (called pairwise comparative modelling) on the basis of a three-dimensional structure (homology comparative modelling), leading to the prediction of 6,095 ARDs in a catalogue of 3.9 million proteins from the human intestinal microbiota. We found that the majority of predicted ARDs (pdARDs) were distantly related to known ARDs (mean amino acid identity 29.8%) and found little evidence supporting their transfer between species. According to the composition of their resistome, we were able to cluster subjects from the MetaHIT cohort (n = 663) into six resistotypes that were connected to the previously described enterotypes. Finally, we found that the relative abundance of pdARDs was positively associated with gene richness, but not when subjects were exposed to antibiotics. Altogether, our results indicate that the majority of intestinal microbiota ARDs can be considered intrinsic to the dominant commensal microbiota and that these genes are rarely shared with bacterial pathogens

    Misfolded SOD1 Associated with Motor Neuron Mitochondria Alters Mitochondrial Shape and Distribution Prior to Clinical Onset

    Get PDF
    Mutations in superoxide dismutase (SOD1) are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS

    Healthcare professionals' intentions to use wiki-based reminders to promote best practices in trauma care: a survey protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Healthcare professionals are increasingly using wikis as collaborative tools to create, synthesize, share, and disseminate knowledge in healthcare. Because wikis depend on collaborators to keep content up-to-date, healthcare professionals who use wikis must adopt behaviors that foster this collaboration. This protocol describes the methods we will use to develop and test the metrological qualities of a questionnaire that will assess healthcare professionals' intentions and the determinants of those intentions to use wiki-based reminders that promote best practices in trauma care.</p> <p>Methods</p> <p>Using the Theory of Planned Behavior, we will conduct semi-structured interviews of healthcare professionals to identify salient beliefs that may affect their future use of wikis. These beliefs will inform our questionnaire on intended behavior. A test-retest of the survey will verify the questionnaire's stability over time. We will interview 50 healthcare professionals (25 physicians and 25 allied health professionals) working in the emergency departments of three trauma centers in Quebec, Canada. We will analyze the content of the interviews and construct and pilot a questionnaire. We will then test the revised questionnaire with 30 healthcare professionals (15 physicians and 15 allied health professionals) and retest it two weeks later. We will assess the internal consistency of the questionnaire constructs using Cronbach's alpha coefficients and determine their stability with the intra-class correlation (ICC).</p> <p>Discussion</p> <p>To our knowledge, this study will be the first to develop and test a theory-based survey that measures healthcare professionals' intentions to use a wiki-based intervention. This study will identify professionals' salient beliefs qualitatively and will quantify the psychometric capacities of the questionnaire based on those beliefs.</p

    Hepatitis C Virus Induces the Cannabinoid Receptor 1

    Get PDF
    BACKGROUND: Activation of hepatic CB(1) receptors (CB(1)) is associated with steatosis and fibrosis in experimental forms of liver disease. However, CB(1) expression has not been assessed in patients with chronic hepatitis C (CHC), a disease associated with insulin resistance, steatosis and metabolic disturbance. We aimed to determine the importance and explore the associations of CB(1) expression in CHC. METHODS: CB(1) receptor mRNA was measured by real time quantitative PCR on extracted liver tissue from 88 patients with CHC (genotypes 1 and 3), 12 controls and 10 patients with chronic hepatitis B (CHB). The Huh7/JFH1 Hepatitis C virus (HCV) cell culture model was used to validate results. PRINCIPAL FINDINGS: CB(1) was expressed in all patients with CHC and levels were 6-fold higher than in controls (P<0.001). CB(1) expression increased with fibrosis stage, with cirrhotics having up to a 2 fold up-regulation compared to those with low fibrosis stage (p<0.05). Even in mild CHC with no steatosis (F0-1), CB(1) levels remained substantially greater than in controls (p<0.001) and in those with mild CHB (F0-1; p<0.001). Huh7 cells infected with JFH-1 HCV showed an 8-fold upregulation of CB(1), and CB(1) expression directly correlated with the percentage of cells infected over time, suggesting that CB(1) is an HCV inducible gene. While HCV structural proteins appear essential for CB(1) induction, there was no core genotype specific difference in CB(1) expression. CB(1) significantly increased with steatosis grade, primarily driven by patients with genotype 3 CHC. In genotype 3 patients, CB(1) correlated with SREBP-1c and its downstream target FASN (SREBP-1c; R=0.37, FASN; R=0.39, p<0.05 for both). CONCLUSIONS/SIGNIFICANCE: CB(1) is up-regulated in CHC and is associated with increased steatosis in genotype 3. It is induced by the hepatitis C virus
    corecore