40 research outputs found

    Drosophila Imaginal Discs as a Playground for Genetic Analysis: Concepts, Techniques and Expectations for Biomedical Research

    Get PDF
    Drosophila imaginal discs are epithelial tissues perfectly suited to use them as a playground to define the functional contribution of genes to epithelial development and organ morphogenesis. The more we know about the discs and the mechanisms directing their development, the best prepared we are to assign specific “functions” to individual genes based on phenotypic observations. Conversely, and thinking from the perspective of the gene, the more we know about its function, the best inferences we could make about the mechanisms underlying imaginal disc development. This reciprocal relationship, coupled to the arsenal of possible experimental approaches available in Drosophila genetics, genomics and cellular biology, makes these tissues excellent systems to address biological problems with biomedical relevance. In this review, an overview of three interconnected aspects related to the use of Drosophila imaginal discs as an experimental system to analyze gene function is given: (i) imaginal discs biology, with a focus in the genetic mechanisms involved in pattern formation; (ii) concepts and available experimental tools for the analyses of gene function and (iii) uses of Drosophila and the imaginal discs for addressing biomedical problems

    Role of the Drosophila Non-Visual ß-Arrestin Kurtz in Hedgehog Signalling

    Get PDF
    The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms

    MAP4K3 Is a Component of the TORC1 Signalling Complex that Modulates Cell Growth and Viability in Drosophila melanogaster

    Get PDF
    Background: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several signalling pathways, including the Imd, EGFR, TORC1 and JNK modules, in different organisms and experimental assays. We have analyzed the consequences of changing the levels of MAP4K3 expression in the development of the Drosophila wing, a convenient model system to characterize gene function during epithelial development. Methodology and Principal Findings: Using loss-of-function mutants and over-expression conditions we find that MAP4K3 activity affects cell growth and viability in the Drosophila wing. These requirements are related to the modulation of the TORC1 and JNK signalling pathways, and are best detected when the larvae grow in a medium with low protein concentration (TORC1) or are exposed to irradiation (JNK). We also show that MAP4K3 display strong genetic interactions with different components of the InR/Tor signalling pathway, and can interact directly with the GTPases RagA and RagC and with the multi-domain kinase Tor. Conclusions and Significance: We suggest that MAP4K3 has two independent functions during wing development, one related to the activation of the JNK pathway in response to stress and other in the assembling or activation of the TORC1 complex, being critical to modulate cellular responses to changes in nutrient availability

    Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice

    Get PDF
    Nutrigenetic research examines the effects of inter-individual differences in genotype on responses to nutrients and other food components, in the context of health and of nutrient requirements. A practical application of nutrigenetics is the use of personal genetic information to guide recommendations for dietary choices that are more efficacious at the individual or genetic subgroup level relative to generic dietary advice. Nutrigenetics is unregulated, with no defined standards, beyond some commercially adopted codes of practice. Only a few official nutrition-related professional bodies have embraced the subject, and, consequently, there is a lack of educational resources or guidance for implementation of the outcomes of nutrigenetic research. To avoid misuse and to protect the public, personalised nutrigenetic advice and information should be based on clear evidence of validity grounded in a careful and defensible interpretation of outcomes from nutrigenetic research studies. Evidence requirements are clearly stated and assessed within the context of state-of-the-art ‘evidence-based nutrition’. We have developed and present here a draft framework that can be used to assess the strength of the evidence for scientific validity of nutrigenetic knowledge and whether ‘actionable’. In addition, we propose that this framework be used as the basis for developing transparent and scientifically sound advice to the public based on nutrigenetic tests. We feel that although this area is still in its infancy, minimal guidelines are required. Though these guidelines are based on semiquantitative data, they should stimulate debate on their utility. This framework will be revised biennially, as knowledge on the subject increases

    Association between T2-related co-morbidities and effectiveness of biologics in severe asthma

    Get PDF
    Acknowledgments The authors thank Mr. Joash Tan (BSc, Hons), of the Observational and Pragmatic Research Institute (OPRI), and Ms Andrea Lim (BSc, Hons) of the Observational Pragmatic Research Institute (OPRI) for their editorial and formatting assistance that supported the development of this publication. Funding statement: This study was conducted by the Observational and Pragmatic Research Institute (OPRI) Pte Ltd and was partially funded by Optimum Patient Care Global and AstraZeneca Ltd. AstraZeneca UK LimitedPeer reviewe

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    A dorsal/ventral boundary, established by Notch, controls growth and polarity in the Drosophila eye

    No full text
    In the Drosophila compound eye the dorsal and ventral fields of eye units (ommatidia) meet along the dorsoventral midline, forming a line of mirror image symmetry called the equator1. The molecular mechanism establishing the equator is not fully understood, but it involves the transcription factors2 encoded by the Iroquois gene complex3. The Iroquois genes are expressed in the dorsal half of the eye2 and here we show that they regulate the expression of the secreted molecule Fringe. A boundary between fringe -expressing and fringe -non-expressing cells is essential, from the time of the second larval instar, for eye growth and formation of the equator. Boundaries of fringe expression determine where the transmembrane receptor Notch is activated4,5. We find that Notch is activated at the dorsoventral midline, where it is required to promote growth and set up the axis of mirror symmetry. As boundaries of fringe expression and Notch activation are also important during Drosophila wing formation6 and vertebrate somitogenesis7,8,9, we suggest that these boundaries constitute a general mechanism that directs growth and patterning of large fields of cells.M. D. is supported by an EMBO fellowship and J.F.C. by a Wellcome Trust project grant.Peer reviewe
    corecore