32 research outputs found

    Assessment of healthy and harmful Maillard reaction products in a novel coffee cascara beverage: Melanoidins and acrylamide

    Get PDF
    Our research aimed to evaluate the formation of Maillard reaction products in sun-dried coffee cascara and their impact on the safety and health promoting properties of a novel beverage called “Instant Cascara” (IC) derived from this coffee by-product. Maillard reaction products in sun-dried coffee cascara have never been reported. “Instant Cascara” (IC) extract was obtained by aqueous extraction and freeze-drying. Proteins, amino acids, lipids, fatty acid profile, sugars, fiber, minerals, and vitamins were analyzed for its nutritional characterization. Acrylamide and caffeine were used as chemical indicators of safety. Colored compounds, also called melanoidins, their stability under 40 °C and in light, and their in vitro antioxidant capacity were also studied. A safe instant beverage with antioxidant properties was obtained to which the following nutritional claims can be assigned: “low fat”, “low sugar” “high fiber” and “source of potassium, magnesium and vitamin C”. For the first time, cascara beverage color was attributed to the presence of antioxidant melanoidins (>10 kDa). IC is a potential sustainable alternative for instant coffee, with low caffeine and acrylamide levels and a healthy composition of nutrients and antioxidants.Fil: Iriondo DeHond, Amaia. Consejo Superior de Investigaciones Científicas. Instituto de Investigación en Ciencias de la Alimentación; EspañaFil: Elizondo, Ana Sofía. Consejo Superior de Investigaciones Científicas. Instituto de Investigación en Ciencias de la Alimentación; EspañaFil: Iriondo DeHond, Maite. Instituto Madrileño de Investigación y Desarrollo Rural; EspañaFil: Ríos, Maria Belén. Consejo Superior de Investigaciones Científicas. Instituto de Investigación en Ciencias de la Alimentación; EspañaFil: Mufari, Jesica Romina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Ciencias y Tecnología de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Consejo Superior de Investigaciones Científicas. Instituto de Investigación en Ciencias de la Alimentación; EspañaFil: Mendiola, Jose A.. Consejo Superior de Investigaciones Científicas. Instituto de Investigación en Ciencias de la Alimentación; EspañaFil: Ibañez, Elena. Consejo Superior de Investigaciones Científicas. Instituto de Investigación en Ciencias de la Alimentación; EspañaFil: del Castillo, Maria Dolores. Consejo Superior de Investigaciones Científicas. Instituto de Investigación en Ciencias de la Alimentación; Españ

    Comunica-Media: Uso de la grabación de clases, el screencast y la videoconferencia en el aula

    Get PDF
    A medida que la tecnología mejora y se extiende entre los usuarios es conveniente y necesario que los sistemas educativos se adapten y aprovechen lo que estas nuevas tecnologías pueden ofrecer. Así se puede motivar más a los alumnos y profesores ofreciéndoles contenidos más completos e interactivos. En esta comunicación se presenta el proyecto Comunica-Media del Servicio de Innovación Educativa de la Universidad Politécnica de Madrid (UPM). El objetivo principal de este proyecto es promover y evaluar el uso de la grabación de clases, la videoconferencia y el screencast en seis diferentes escuelas y asignaturas de la UPM

    Spatial distribution of CD3- and CD8-positive lymphocytes as pretest for POLE wild-type in molecular subgroups of endometrial carcinoma.

    Get PDF
    INTRODUCTION Over the years, the molecular classification of endometrial carcinoma has evolved significantly. Both POLEmut and MMRdef cases share tumor biological similarities like high tumor mutational burden and induce strong lymphatic reactions. While therefore use case scenarios for pretesting with tumor-infiltrating lymphocytes to replace molecular analysis did not show promising results, such testing may be warranted in cases where an inverse prediction, such as that of POLEwt, is being considered. For that reason we used a spatial digital pathology method to quantitatively examine CD3+ and CD8+ immune infiltrates in comparison to conventional histopathological parameters, prognostics and as potential pretest before molecular analysis. METHODS We applied a four-color multiplex immunofluorescence assay for pan-cytokeratin, CD3, CD8, and DAPI on 252 endometrial carcinomas as testing and compared it to further 213 cases as validation cohort from a similar multiplexing assay. We quantitatively assessed immune infiltrates in microscopic distances within the carcinoma, in a close distance of 50 microns, and in more distant areas. RESULTS Regarding prognostics, high CD3+ and CD8+ densities in intra-tumoral and close subregions pointed toward a favorable outcome. However, TCGA subtyping outperforms prognostication of CD3 and CD8 based parameters. Different CD3+ and CD8+ densities were significantly associated with the TCGA subgroups, but not consistently for histopathological parameter. In the testing cohort, intra-tumoral densities of less than 50 intra-tumoral CD8+ cells/mm2 were the most suitable parameter to assume a POLEwt, irrespective of an MMRdef, NSMP or p53abn background. An application to the validation cohort corroborates these findings with an overall sensitivity of 95.5%. DISCUSSION Molecular confirmation of POLEmut cases remains the gold standard. Even if CD3+ and CD8+ cell densities appeared less prognostic than TCGA, low intra-tumoral CD8+ values predict a POLE wild-type at substantial percentage rates, but not vice versa. This inverse correlation might be useful to increase pretest probabilities in consecutive POLE testing. Molecular subtyping is currently not conducted in one-third of cases deemed low-risk based on conventional clinical and histopathological parameters. However, this percentage could potentially be increased to two-thirds by excluding sequencing of predicted POLE wild-type cases, which could be determined through precise quantification of intra-tumoral CD8+ cells

    Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.

    Get PDF
    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A12014) and by the European Community’s Seventh Framework Programme under grant agreement n8 223175 (HEALTH-F2–2009-223175) (COGS). Meetings of the BCAC have been funded by the European Union COST programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program and the Ministry of Economic Development, Innovation and Export Trade of Quebec (PSR-SIIRI-701). Additional support for the iCOGS infrastructure was provided by the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS and OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products or organizations imply endorsement t by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and M.C.S. is a NHMRC Senior Research Fellow. The OFBCR work was also supported by the Canadian Institutes of Health Research ‘CIHR Team in Familial Risks of Breast Cancer’ program. The ABCS was funded by the Dutch Cancer Society Grant no. NKI2007-3839 and NKI2009-4363. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Programme of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). E.S. is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, UK. Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z). I.T. is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by the Fondation de France, the French National Institute of Cancer (INCa), The National League against Cancer, the National Agency for Environmental l and Occupational Health and Food Safety (ANSES), the National Agency for Research (ANR), and the Association for Research against Cancer (ARC). The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital.The CNIO-BCS was supported by the Genome Spain Foundation the Red Temática de Investigación Cooperativa en Cáncer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitario PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit, CNIO is supported by the Instituto de Salud Carlos III. D.A. was supported by a Fellowship from the Michael Manzella Foundation (MMF) and was a participant in the CNIO Summer Training Program. The CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the National Institutes of Health (R01 CA77398). Collection of cancer incidence e data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), as well as the Department of Internal Medicine , Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus Bonn, Germany. The HEBCS was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by a research grant from Takeda Science Foundation , by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by short-term fellowships from the German Academic Exchange Program (to N.B), and the Friends of Hannover Medical School (to N.B.). Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Stockholm Cancer Foundation and the Swedish Cancer Society. The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation , the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia. The kConFab Clinical Follow Up Study was funded by the NHMRC (145684, 288704, 454508). Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC (199600). G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018 and 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP) which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute’s Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the ‘Stichting tegen Kanker’ (232-2008 and 196-2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I), the Federal Ministry of Education Research (BMBF) Germany (01KH0402), the Hamburg Cancer Society and the German Cancer Research Center (DKFZ). MBCSG is supported by grants from the Italian Association ciation for Cancer Research (AIRC) and by funds from the Italian citizens who allocated a 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5 × 1000’). The MCBCS was supported by the NIH grants (CA122340, CA128978) and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), the Breast Cancer Research Foundation and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research (grant CRN-87521) and the Ministry of Economic Development, Innovation and Export Trade (grant PSR-SIIRI-701). MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19,tel:08/1/35/19./550), Singapore and the National medical Research Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council (155218/V40, 175240/S10 to A.L.B.D., FUGE-NFR 181600/ V11 to V.N.K. and a Swizz Bridge Award to A.L.B.D.). The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Sigrid Juselius Foundation, the Academy of Finland, the University of Oulu, and the Oulu University Hospital. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NLCP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. pKARMA is a combination of the KARMA and LIBRO-1 studies. KARMA was supported by Ma¨rit and Hans Rausings Initiative Against Breast Cancer. KARMA and LIBRO-1 were supported the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linnaeus Centre (Contract ID 70867902) financed by the Swedish Research Council. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SASBAC was supported by funding from the Agency for Science, Technology and Research of Singapore (A∗STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation KC was financed by the Swedish Cancer Society (5128-B07-01PAF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295. Funding for the SCCS was provided by NIH grant R01 CA092447. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by a programme grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). SGBCC is funded by the National Medical Research Council Start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). The recruitment of controls by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC) was funded by the Biomedical Research Council (grant number: 05/1/21/19/425). SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. K. J. is a fellow of International PhD program, Postgraduate School of Molecular Medicine, Warsaw Medical University, supported by the Polish Foundation of Science. The TNBCC was supported by the NIH grant (CA128978), the Breast Cancer Research Foundation , Komen Foundation for the Cure, the Ohio State University Comprehensive Cancer Center, the Stefanie Spielman Fund for Breast Cancer Research and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. Part of the TNBCC (DEMOKRITOS) has been co-financed by the European Union (European Social Fund – ESF) and Greek National Funds through the Operational Program ‘Education and Life-long Learning’ of the National Strategic Reference Framework (NSRF)—Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. The TWBCS is supported by the Institute of Biomedical Sciences, Academia Sinica and the National Science Council, Taiwan. The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust.This is the advanced access published version distributed under a Creative Commons Attribution License 2.0, which can also be viewed on the publisher's webstie at: http://hmg.oxfordjournals.org/content/early/2014/07/04/hmg.ddu311.full.pdf+htm

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol

    Get PDF
    Microalgae represent diverse branch of microorganism that can produce a wide range of unique functional ingredients that can be used in food, cosmetics, pharmaceuticals, and energy. Among them, Haematococcus pluvialis is known for accumulating the highest levels of a potent natural antioxidant, astaxanthin, which has demonstrated positive health effects. Therefore, the aim of numerous studies has been to develop novel and efficient extraction techniques to produce high-quality (purity and antioxidant activity) extracts, while complying with the Green Chemistry Principles. Supercritical CO2 (scCO2) emerges as an alternative to organic solvents because of its high selectivity and bioactivity-preserving qualities. Nevertheless, astaxanthin is a large molecule with low solubility in scCO2 that usually requires long extractions at high pressures. Ethanol has been used as co-solvent to increase astaxanthin solubility in scCO2. In this work, a Box-Behnken experimental design was used to study the effects of operating pressure (20-35 MPa), temperature (40-70 °C), and ethanol content in scCO2 (0-13%, w/w) on the yield, astaxanthin content, and antioxidant activity of H. pluvialis extract. Results showed that ethanol content in CO2 has a more significant effect on all responses than pressure and temperature. These results lead us to investigate the effect of a further increase in ethanol content, up to the region of gas-expanded liquids. We studied the effects of temperature (30-60 °C) and ethanol content (50-70%, w/w) at a fixed pressure (7 MPa) on the same response variables using CO2-expanded ethanol (CXE). Results showed that temperature and ethanol content had a significant influence on astaxanthin yield and antioxidant activity. Also, the overall responses of CXE surpassed scCO2 extractions to match conventional extraction with acetone, maintaining high quality extracts, thus validating the use of this new type of green technology for extraction of high-value compounds. © 2014 Elsevier B.V.The authors want to thank Spanish Projects AGL2011-29857-C03-01 and CONSOLIDER INGENIO 2010 CSD2007-00063 FUN-C-FOOD (Ministerio de Economía y Competitividad) and the European project MIRACLES (KBBE.2013.3.2-02: The CO2 algae biorefinery). Fabián A. Reyes would like to thank CONICYT-Chile for supporting his fellowship in CIAL-CSIC, Spain.Peer Reviewe

    Gas expanded liquids (GXLs) as new solvents for bioactives extraction

    No full text
    Resumen del trabajo presentado al XIII Scientific Meeting of the Spanish Society of Chromatography and Related Techniques celebrado en Tenerife (España) del 8 al 11 de octubre de 2013.Haematococcus pluvialis is a microalgae known for accumulating the highest levels of a potent natural antioxidant, astaxanthin, that has demonstrated positive health effects. Therefore, numerous studies have focus on the development of novel and efficient extraction techniques that are in agreement with the strong demands in terms of quality of the extracts (purity and antioxidant activity), while complying with the Green Chemistry Principles. Supercritical CO2 (scCO2) emerges as an alternative to organic solvents because of its high selectivity and bioactivity-preserving qualities. Nevertheless, astaxanthin is a large molecule with low solubility in scCO2 that usually requires high pressures, long extraction times and a necessary pretreatment (i.e grinding) of the microalgae. Ethanol has been used as a green co-solvent for greatly improving astaxanthin yield by avoiding the problems faced by the use of pure scCO2. Nonetheless, it is not clear the relationship that exists between other extraction factors such as pressure and temperature. In this study we used a Box Behnken experimental design (BBD) that investigated the effects of operating pressure (200-350 bar), temperature (40-70 ºC) and modifier (0-13 %w/w Ethanol) on scCO2 extraction of oleoresin yield, astaxanthin yield and antioxidant activity of the extracts. The experimental design showed that for all response variables the modifier effect was the most significant factor over pressure and temperature. These results lead us to investigate the effects of a further increase in the modifier content, up to the region of gas-expanded liquids (GXL). GXLs have shown to have improved mass transfer through reduced viscosity, increased solute diffusivity and decreased interfacial tension.We studied the effect of temperature (30-60 ºC) and modifier (50-70%) at a fixed pressure (70 bar) on the same response variables. Results showed that increasing temperature generally worsened the recovery of astaxanthin and the antioxidant activity of the extracts. Still, low temperatures and 50% w/w of modifier could achieve more than 90% of recovery of astaxanthin within 2 hours of extraction. Furthermore, in the case of 45ºC and 50% w/w of modifier the recovery of astaxanthin surpassed the recovery achieved by a conventional acetone extraction, hence, validating the use of this new type of green technology for extraction of high valued compounds.Peer Reviewe

    Adsorbent-assisted supercritical CO2 extraction of carotenoids from Neochloris oleoabundans paste

    No full text
    Neochloris oleoabundans emerges as alternative source of bioactives that complies with the algae-based biorefinery concept, which consists of a platform that offers a multitude of algae bioproducts. The development of an integrated extractive processes in line with the green chemistry principles have motivated the use of Supercritical CO (scCO), as an alternative to toxic organic solvents, for the extraction of bioactives. However, process integration and optimization is challenging because microalgae are grown in liquid cultures, therefore is often necessary a drying step prior to scCO extraction. Moreover, this step is usually energy intensive and risks damaging the compound's bioactivity. An alternative is the simultaneous extraction process of the microalgae paste (containing around 70-80% water), nevertheless little information is available that explores this type of extraction. This work aims to explore the direct extraction of microalgae paste and to evaluate the effect of water on carotenoid extractions of N. oleoabundans. To study the extraction under a batch-wise system, an indirect extraction system was developed by mixing the microalgae paste with low cost adsorbents as support medium. Two types of silica gels, two different chitosans and active carbon were tested as adsorbents; sea sand was used as inert control. All of the materials showed different adsorbent capacity, being chitosan adsorbents those with higher capacity. However, oleoresin yield and recovery was negligible in a system with only scCO as a solvent and ethanol as co-solvent was required to improve the extraction yield. Although the overall oleoresin recoveries were low for all adsorbents (ranging from 2 to 10%), chitosan-assisted extraction showed the highest carotenoid recoveries (60-140% g/g) surpassing acetone benchmark extraction in case of chitosan microspheres. These results are interesting for the development of low energy consumption processes, since there is no need to dry the microalgal paste.Spanish Projects AGL2011-29857-C03-01, AGL2014-53609-P (MINECO, Spain) and ALIBIRD-CM, S2013/ABI-2728 (Comunidad de Madrid) and the European project MIRACLES (KBBE.2013.3.2-02: The CO2 algae biorefinery) are acknowledged for their financial support. Fabián A. Reyes would like to thank CONICYT-Chile for supporting his fellowship in CIAL-CSIC, Spain.Peer Reviewe

    Life cycle assessment of green pilot-scale extraction processes to obtain potent antioxidants from rosemary leaves

    No full text
    In this work, the water extraction and particle formation on-line (WEPO) process has been used to obtain dry antioxidant powder from rosemary leaves. This process includes pressurized hot water extraction (PHWE) and on-line drying of the extracts in one step. Based on previous works, water extraction at 200 degrees C was selected to achieve the maximum antioxidant activity while water flow rate was studied to determine its influence on powder formation. Other parameters influencing the drying process, such as scCO(2) pressure (80 bar) and flow rate (2.5 mL/min) and N-2 flow rate (0.6 mL/min) were settled to obtain a fine and constant spray. Powders obtained were evaluated in terms of particle size and morphology by scanning electron microscopy (SEM) as well as antioxidant capacity by an in vitro DPPH antioxidant assay. In order to assess the environmental performance of the WEPO process, this has been compared in terms of Life Cycle Assessment (LCA) to other green processes typically used for antioxidant extraction from rosemary leaves, such as supercritical fluid extraction (SFE) and a static pressurized hot water extraction, PHWE, carried out with a commercial equipment, both followed by a conventional drying step. The WEPO process, carried out in one step, giving dry bioactive extracts from rosemary, results in lower environmental impacts and energy consumption than the other green processes studied. The sensitivity assessment demonstrated the importance of primary energy sources in the production of electricity used, especially when green processes are being implemented. (C) 2012 Elsevier B.V. All rights reserved

    Aplicaciones y ejemplos de modelos de crecimiento diamétrico para árboles tropicales

    No full text
    Growth and yield models of individual tropical trees are central to conventional and sustainable forest management. The objective was to fit five diameter growth and yield models to Latin-American individual tropical trees and to derive diameter growth curves as a function of age. Diameter increments were collected from individual tropical trees. With the use of statistical techniques,five increment models amenable to be integrated over time: Log Normal, Chapman-Richards, Von Bertalanfy, Logistic, and Gompertz were fitted. Assuming an initial diameter of seedlings at age=1, diameter growth curves were developed, which can also be fitted by the integral form of the increment equations. Results show parameters of best adjusted increment equations as well as growth curves as a function of age and the document discusses their potential utilization in forest management plans. The goodness of fit statistics could not tell apart whether the number of monitored trees controlled the best fitting model. Further research is recommended to check on the limits of model application and the assumptions set on the diameter growth time series.Los modelos de incremento y rendimiento forman la base de la planeación estratégica forestal convencional y sustentable. Los objetivos fueron ajustar cinco modelos de incremento en diámetro a árboles individuales creciendo en bosques tropicales Latinoamericanos y desarrollar las curvas de crecimiento en función de la edad a partir de los modelos de incremento. Se usaron incrementos diamétricos anuales de árboles individuales de especies tropicales de Latinoamérica. Con técnicas estadísticas se ajustaron los modelos de incremento: Log Normal, Chapman-Richards, Von Bertalanfy, Logístico y Gompertz con ecuaciones integrables en tiempo. Las curvas de crecimiento en diámetro se desarrollaron suponiendo el diámetro inicial a una edad de un año. Los resultados muestran los parámetros de las ecuaciones de mejor ajuste y las curvas de crecimiento diamétrico en función de la edad y se describe su potencial utilización en el desarrollo de planes de manejo forestal. La base de datos no fue suficiente para detectar si el número de árboles muestreados influyó en el ajuste de un modelo en específico. Es necesario realizar nuevas investigaciones para revisar los límites donde aplican las suposiciones con el ajuste de los modelos a series de tiempo de crecimiento convencionales y a series aún más cortas en tiempo
    corecore