22 research outputs found
Interleukin 15 Levels in Serum May Predict a Severe Disease Course in Patients with Early Arthritis
Background: Interleukin-15 (IL-15) is thought to be involved in the physiopathological mechanisms of RA and it can be detected in the serum and the synovial fluid of inflamed joints in patients with RA but not in patients with osteoarthritis or other inflammatory joint diseases. Therefore, the objective of this work is to analyse whether serum IL-15 (sIL-15) levels serve as a biomarker of disease severity in patients with early arthritis (EA). Methodology and Results: Data from 190 patients in an EA register were analysed (77.2% female; median age 53 years; 6-month median disease duration at entry). Clinical and treatment information was recorded systematically, especially the prescription of disease modifying anti-rheumatic drugs. Two multivariate longitudinal analyses were performed with different dependent variables: 1) DAS28 and 2) a variable reflecting intensive treatment. Both included sIL-15 as predictive variable and other variables associated with disease severity, including rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibodies (ACPA). Of the 171 patients (638 visits analysed) completing the follow-up, 71% suffered rheumatoid arthritis and 29% were considered as undifferentiated arthritis. Elevated sIL-15 was detected in 29% of this population and this biomarker did not overlap extensively with RF or ACPA. High sIL-15 levels (β Coefficient [95% confidence interval]: 0.12 [0.06-0.18]; p&0.001) or ACPA (0.34 [0.01-0.67]; p = 0.044) were significantly and independently associated with a higher DAS28 during follow-up, after adjusting for confounding variables such as gender, age and treatment. In addition, those patients with elevated sIL-15 had a significantly higher risk of receiving intensive treatment (RR 1.78, 95% confidence interval 1.18-2.7; p = 0.007). Conclusions: Patients with EA displaying high baseline sIL-15 suffered a more severe disease and received more intensive treatment. Thus, sIL-15 may be a biomarker for patients that are candidates for early and more intensive treatmentThe work of Belen Díaz-Sánchez was supported by the RETICS Programme (Programa de Redes Temáticas de Investigación Colaborativa [Colaborative Research Thematic Network Programme]; RD08/0075 - RIER [Red de Inflamación y Enfermedades Reumáticas; Inflammation and Rheumatic Diseases Network]) from the Instituto de Salud Carlos III, Spain (URL: www.isciii.es) within the VI National Plan for I+D+I 2008–2011 (FEDER). The work of Isidoro González-Álvaro was in part supported by a grant for the Intensification of the Research Tasks in the National Health Care System from Instituto de Salud Carlos III, Spain. The consumables for measurements and data analysis were supported by a Fondo de Investigación Sanitaria grant (08/0754) from the Instituto de Salud Carlos II
Spread of a SARS-CoV-2 variant through Europe in the summer of 2020
[EN] Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3,4,5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes.S
Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences
The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported
by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on
18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based
researchers who signed it in the short time span from 20 September to 6 October 2016
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients With Gastric Cancer
Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer
Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients With Gastric Cancer
Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer.Fil: Sahasrabudhe, Ruta. University of California at Davis; Estados UnidosFil: Lott, Paul. University of California at Davis; Estados UnidosFil: Bohorquez, Mabel. Universidad del Tolima; ColombiaFil: Toal, Ted. University of California at Davis; Estados UnidosFil: Estrada, Ana P.. Universidad del Tolima; ColombiaFil: Suarez, John J.. Universidad del Tolima; ColombiaFil: Brea Fernández, Alejandro. Ciber Enfermedades Raras; EspañaFil: Cameselle Teijeiro, José. Complejo Hospitalario Universitario de Santiago; EspañaFil: Pinto, Carla. Instituto Portugues de Oncologia de Francisco Gentil Porto; PortugalFil: Ramos, Irma. Instituto Mexicano del Seguro Social; MéxicoFil: Mantilla, Alejandra. Departamento de Patologia la Unidad Medica Alta Especialidad Oncologia; MéxicoFil: Prieto, Rodrigo. Universidad del Tolima; ColombiaFil: Corvalan, Alejandro. Pontificia Universidad Católica de Chile; ChileFil: Norero, Enrique. Pontificia Universidad Católica de Chile; ChileFil: Alvarez, Carolina. Universidad Católica de Chile; ChileFil: Tapia, Teresa. Pontificia Universidad Católica de Chile; ChileFil: Carvallo, Pilar. Pontificia Universidad Católica de Chile; ChileFil: Gonzalez, Luz M.. Instituto de Cancerologia, Las Americas; ColombiaFil: Cock-Rada, Alicia. Instituto de Cancerologia, Las Americas; ColombiaFil: Solano, Angela Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro de Educaciones Médicas e Investigación Clínica ; Argentina. Universidad de Buenos Aires; ArgentinaFil: Neffa, Florencia. Laboratorio Genia; UruguayFil: Della Valle, Adriana. Laboratorio Genia; UruguayFil: Yau, Chris. University of Oxford; Reino UnidoFil: Soares, Gabriela. Centro Hospitalar Do Porto; PortugalFil: Borowsky, Alexander. University of California at Davis; Estados UnidosFil: Hu, Nan. National Cancer Institute; Estados UnidosFil: He, Li-Ji. Yangcheng Cancer Hospital; ChinaFil: Han, Xiao-You. Shanxi Cancer Hospital; ChinaFil: Taylor, Philip R.. National Institutes of Health; Estados UnidosFil: Goldstein, Alisa M.. National Institutes of Health; Estados UnidosFil: Torres, Javier. Instituto Mexicano del Seguro Social; MéxicoFil: Echeverry, Magdalena. Universidad del Tolima; ColombiaFil: Ruiz-Ponte, Clara. Centro de Investigación Biomédica en Red de Enfermedades Raras; EspañaFil: Teixeira, Manuel R.. Universidad de Porto; PortugalFil: Carvajal Carmona, Luis G.. University of California at Davis; Estados Unido