60 research outputs found

    Changes in the vegetation composition of hay meadows between 1993 and 2009 in the Picos de Europa and implications for nature conservation

    Get PDF
    The Picos de Europa are a range of predominantly Carboniferous Limestone and Sandstone mountains mainly in the Cantabrian region of northern Spain. The highest peaks are precipitous and reach 2600 m. There are complex gradients between Lusitanian, Alpine and Mediterranean environmental zones, as well as variable soil types. In combination with the long history of traditional agricultural management, a wide range of diverse habitats and species is present. The herb-rich hay meadows have long been recognised as having a high nature conservation value but, as elsewhere in European mountains, such grasslands are threatened by changing agricultural practices. Accordingly, in 1993, 92 quadrats were recorded using a restricted list of indicator species from stratified random samples. The authors repeated the sample in 2009. Changed land use had only occurred in approximately 3% of meadows, however, farmyard manure was no longer used, probably because of shortage of labour. Statistical analysis of the vegetation data showed a range of significant changes consistent with the increased use of slurry, as well as re-seeding of some fields. The grass swards had not only become denser, with fewer species present, but there was also a loss of sensitive indicators especially of calcareous conditions and open vegetation. By contrast, competitors had increased and the vegetation had become simpler, with the balance of vegetation types shifting to more nutrient rich conditions. These changes have mainly occurred in the more fertile meadows used for silage. The core of about 35% of herb-rich meadows, mainly cut for hay, has remained relatively stable but the results show that they are at risk if the current trend continues. If management practices that form the core of traditional agriculture are not maintained, one of the most important resources of herb-rich meadows in Europe will be lost

    The Roman Hinterland Project:Integrating Archaeological Field Surveys around Rome and Beyond

    Get PDF
    This article presents the background to and prospects for a new initiative in archaeological field survey and database integration. The Roman Hinterland Project combines data from the Tiber Valley Project, Roman Suburbium Project, and the Pontine Region Project into a single database, which the authors believe to be one of the most complete repositories of data for the hinterland of a major ancient metropolis, covering nearly 2000 years of history. The logic of combining these databases in the context of studying the Roman landscape is explained and illustrated with analyses that show their capacity to contribute to major debates in Roman economy, demography, and the longue durée of the human condition in a globalizing world

    Back to the future: rethinking socioecological systems underlying high nature value farmlands

    Get PDF
    Additional, web-only material may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/10. 1002/fee.2116/suppinfoFarmlands are currently among the dominant uses of the land. When managed under low-input farming systems, farmlands are associated with diverse cultural and natural heritages around the world. Known in Europe as high nature value (HNV) farmlands, these agricultural landscapes and their associated farming systems evolved as tightly coupled socioecological systems, and are essential to biodiversity conservation and the delivery of ecosystem services to society. However, HNV farmlands are vulnerable to socioeconomic changes that lead to either agricultural intensification or land abandonment. We present a range of plausible future scenarios for HNV farmlands, and discuss the related management options and expected socioecological outcomes for each scenario. We then provide recommendations for policy, practice, and research on how to best ensure the socioecological viability of HNV farming systems in the futureinfo:eu-repo/semantics/publishedVersio

    A framework for habitat monitoring and climate change modelling: construction and validation of the Environmental Stratification of Estonia

    Get PDF
    Environmental stratifications provide the framework for efficient surveillance and monitoring of biodiversity and ecological resources, as well as modelling exercises. An obstacle for agricultural landscape monitoring in Estonia has been the lack of a framework for the objective selection of monitoring sites. This paper describes the construction and testing of the Environmental Stratification of Estonia (ESE). Principal components analysis was used to select the variables that capture the most amount of variation. Seven climate variables and topography were selected and subsequently subjected to the ISODATA clustering routine in order to produce relatively homogeneous environmental strata. The ESE contains eight strata, which have been described in terms of soil, land cover and climatic parameters. In order to assess the reliability of the stratification procedure for the selection of monitoring sites, the ESE was compared with the previous map of Landscape Regions of Estonia and correlated with five environmental data sets. All correlations were significant. The stratification has therefore already been used to extend the current series of samples in agricultural landscapes into a more statistically robust series of monitoring sites. The potential for applying climate change scenarios to assess the shifts in the strata and associated ecological impacts is also examined.</p

    How much would it cost to monitor farmland biodiversity in Europe?

    Get PDF
    International audienceTo evaluate progress on political biodiversity objectives, biodiversity monitoring provides information on whether intended results are being achieved. Despite scientific proof that monitoring and evaluation increase the (cost) efficiency of policy measures, cost estimates for monitoring schemes are seldom available, hampering their inclusion in policy programme budgets. Empirical data collected from 12 case studies across Europe were used in a power analysis to estimate the number of farms that would need to be sampled per major farm type to detect changes in species richness over time for four taxa (vascular plants, earthworms, spiders and bees). A sampling design was developed to allocate spatially, across Europe, the farms that should be sampled. Cost estimates are provided for nine monitoring scenarios with differing robustness for detecting temporal changes in species numbers. These cost estimates are compared with the Common Agricultural Policy (CAP) budget (2014-2020) to determine the budgetallocation required for the proposed farmland biodiversity monitoring. Results show that the bee indicator requires the highest number of farms to be sampled and the vascular plant indicator the lowest. The costs for the nine farmland biodiversity monitoring scenarios corresponded to 001%-074% of the total CAP budget and to 004%-248% of the CAP budget specifically allocated to environmental targets.Synthesis and applications. The results of the cost scenarios demonstrate that, based on the taxa and methods used in this study, a Europe-wide farmland biodiversity monitoring scheme would require a modest share of the Common Agricultural Policy budget. The monitoring scenarios are flexible and can be adapted or complemented with alternate data collection options (e.g. at national scale or voluntary efforts), data mobilization, data integration or modelling efforts. Editor's Choic

    Signal recognition particle (SRP)- mediated targeting and Sec-dependent translocation of an extracellular E. coli protein.

    Get PDF
    Hemoglobin protease (Hbp) is a hemoglobin-degrading protein that is secreted by a human pathogenic Escherichia coli strain via the autotransporter mechanism. Little is known about the earliest steps in autotransporter secretion, i.e. the targeting to and translocation across the inner membrane. Here, we present evidence that Hbp interacts with the signal recognition particle (SRP) and the Sec-translocon early during biogenesis. Furthermore, Hbp requires a functional SRP targeting pathway and Sec-translocon for optimal translocation across the inner membrane. SecB is not required for targeting of Hbp but can compensate to some extent for the lack of SRP. Hbp is synthesized with an unusually long signal peptide that is remarkably conserved among a subset of autotransporters. We propose that these autotransporters preferentially use the cotranslational SRP/Sec route to avoid adverse effects of the exposure of their mature domains in the cytoplasm

    Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions

    Get PDF
    Farmland is a major land cover type in Europe and Africa and provides habitat for numerous species. The severe decline in farmland biodiversity of the last decades has been attributed to changes in farming practices, and organic and low-input farming are assumed to mitigate detrimental effects of agricultural intensification on biodiversity. Since the farm enterprise is the primary unit of agricultural decision making, management-related effects at the field scale need to be assessed at the farm level. Therefore, in this study, data were collected on habitat characteristics, vascular plant, earthworm, spider, and bee communities and on the corresponding agricultural management in 237 farms in 13 European and two African regions. In 15 environmental and agricultural homogeneous regions, 6–20 farms with the same farm type (e.g., arable crops, grassland, or specific permanent crops) were selected. If available, an equal number of organic and non-organic farms were randomly selected. Alternatively, farms were sampled along a gradient of management intensity. For all selected farms, the entire farmed area was mapped, which resulted in total in the mapping of 11 338 units attributed to 194 standardized habitat types, provided together with additional descriptors. On each farm, one site per available habitat type was randomly selected for species diversity investigations. Species were sampled on 2115 sites and identified to the species level by expert taxonomists. Species lists and abundance estimates are provided for each site and sampling date (one date for plants and earthworms, three dates for spiders and bees). In addition, farmers provided information about their management practices in face-to-face interviews following a standardized questionnaire. Farm management indicators for each farm are available (e.g., nitrogen input, pesticide applications, or energy input). Analyses revealed a positive effect of unproductive areas and a negative effect of intensive management on biodiversity. Communities of the four taxonomic groups strongly differed in their response to habitat characteristics, agricultural management, and regional circumstances. The data has potential for further insights into interactions of farmland biodiversity and agricultural management at site, farm, and regional scale

    Measurement, Collaborative Learning and Research for Sustainable Use of Ecosystem Services: Landscape Concepts and Europe as Laboratory

    Get PDF
    corecore