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 54 
Summary  55 

1. To evaluate progress on political biodiversity objectives, biodiversity monitoring provides 56 

information on whether intended results are being achieved. Despite scientific proof that 57 

monitoring and evaluation increase the (cost) efficiency of policy measures, cost estimates for 58 

monitoring schemes are seldom available, hampering their inclusion in policy programme 59 

budgets.  60 

2. Empirical data, collected in twelve case studies across Europe, were used in a power analysis to 61 

estimate the number of farms that would need to be sampled per major farm type to detect 62 

changes in species richness over time for four taxa (vascular plants, earthworms, spiders and 63 

bees). A sampling design was developed to allocate spatially, across Europe, the farms that 64 

should be sampled.  65 

3. Cost estimates are provided for nine monitoring scenarios with differing robustness for detecting 66 

temporal changes in species numbers. These cost estimates are compared to the Common 67 

Agricultural Policy (CAP) budget (2014–2020) to determine the budget allocation required for the 68 

proposed farmland biodiversity monitoring.  69 

4. Results show that the bee indicator requires the highest number of farms to be sampled and the 70 

vascular plant indicator the lowest. The costs for the nine farmland biodiversity monitoring 71 

scenarios corresponded to 0·01%–0·74% of the total CAP budget and to 0·04%–2·48% of the CAP 72 

budget specifically allocated to environmental targets.  73 

5. Synthesis and applications. The results of the cost scenarios demonstrate that, based on the taxa 74 

and methods used in this study, a Europe-wide farmland biodiversity monitoring scheme would 75 

require a modest share of the Common Agricultural Policy budget. The monitoring scenarios are 76 

flexible and can be adapted or complemented with alternative data collection options (e.g. at 77 

national scale or voluntary efforts), data mobilization, data integration or modelling efforts. 78 

 79 

Key-words: agriculture, agri-environment schemes, biodiversity indicator, common agricultural 80 

policy, empirical data, farming system, habitat, sampling design, species trend, power analysis.81 
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Introduction 82 

Numerous scientific papers and research projects address the global biodiversity decline (Butchart et 83 

al. 2010). In response, political initiatives to reverse declines in biodiversity have increased in number 84 

and in their global coverage, e.g. the Aichi Biodiversity targets (CBD 2010) and the establishment of 85 

the Intergovernmental Platform on Biodiversity & Ecosystem Services (IPBES). The EU 2020 target of 86 

biodiversity enhancement in European agricultural areas was adopted in the greening of the 87 

European Common Agricultural Policy (CAP) for the period 2014–2020 (EU Regulation No 88 

1307/2013). Positive effects of policies and adopted measures on biodiversity both at farm and 89 

landscape scales are, however, equivocal (Kleijn et al. 2011; Lindenmayer et al. 2012) and it is 90 

generally acknowledged that current monitoring of agri-environment schemes needs to be improved 91 

(Pullin et al. 2009; Scheper et al. 2013). Biodiversity monitoring is required to inform on possible 92 

positive or negative side-effects of management practices, external drivers (e.g. climate change), and 93 

of other policy measures such as the European renewable Energy Directive (EC 2009/28).  94 

Europe is far from void of biodiversity monitoring schemes, but many operate at a national scale due 95 

to governance, language and institutional reasons (e.g. the UK Countryside Survey 96 

[http://www.countrysidesurvey.org.uk] or the National Inventory of Landscapes in Sweden [NILS] 97 

[Ståhl et al. 2011]). Pan-European monitoring schemes do exist but are much more rare, such as the 98 

European Land Use and Cover Area Frame Survey (LUCAS) which does not focus on biodiversity 99 

(EUROSTAT 2009). There are also citizen-science monitoring networks that provide excellent pan-100 

European biodiversity data which are increasingly used in policy reporting, such as the Pan-European 101 

Common Bird Monitoring Scheme (http://www.ebcc.info/pecbm.html) and the European butterfly 102 

monitoring (Brereton, Van Swaay & Van Strien 2009). Whereas standardization of the sampling and 103 

data processing protocols within existing monitoring schemes can be well organized, the 104 

interoperability of indicators and data hamper the type of assessments that can be performed with 105 

data across monitoring schemes (Henry et al. 2008), making biodiversity assessments across taxa, 106 

countries and farming types currently precarious. To improve the interoperability of data and 107 

indicators, standardization and the implementation of a shared sampling design are considered 108 

crucial (Schmeller et al. 2015). 109 

 110 

Biodiversity monitoring is often regarded as costly making budget constraints a common reason to 111 

avoid its implementation (Caughlan & Oakley 2001). However, Naidoo et al. (2006) showed that the 112 

effectiveness of policies is positively correlated with the presence of monitoring efforts. If decision 113 

makers are earnest in their concerns for biodiversity, biodiversity monitoring at multinational scale 114 

should be an integral part of the monitoring and reporting criteria of a European policy instrument 115 

like the CAP. The actual implementation of a shared farmland monitoring scheme would not only 116 

http://www.countrysidesurvey.org.uk/
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strengthen informed decision making, but it would also demonstrate political willingness to act, 117 

counteracting existing doubts on the current approach of the greening of the CAP (Péer et al. 2014). 118 

The need and willingness to invest in biodiversity information has been expressed at global and 119 

European level (Council of the European Union 2010), but a specific level of monitoring expenditure 120 

is not defined. Rieder (2011) argues that between 0.5 and 10% of a policy instrument budget should 121 

be allocated to evaluation and monitoring, whereas recommendations of the European Commission 122 

are at the lower end of this range (0.5%, EC 2004). Whilst cost estimates for the recording of some 123 

individual biodiversity indicators exist at regional or national level (see e.g. Mandelik, Roll & Leischer 124 

2010), this information is lacking at international scales.  125 

 126 

The objective of this paper is to stimulate the development, the discussion and eventually the 127 

implementation of a European farmland biodiversity monitoring system by proposing a sampling 128 

design to detect changes in species richness in four taxonomic groups (vascular plants, earthworms, 129 

spiders and bees). Measures of agro-environmental schemes are aimed and implemented on 130 

individual farms. Therefore, the farm was considered to be the relevant scale for monitoring changes 131 

in farmland biodiversity. As specific measures often target specific farm types, a distinction in major 132 

farm types was used.  133 

Combining information from a pan-European data set on the variability of species richness for four 134 

taxa across major farm types and the spatial distribution of farm types in Europe, enabled an 135 

estimation of the number of farms that would need to be sampled to detect changes in species 136 

richness. The proposed sampling design for a European farmland biodiversity monitoring scheme is 137 

complemented with estimates of the related costs presented in Targetti et al. (2014), which were 138 

then compared with the CAP budget (2014–2020) to estimate a possible budget allocation for the 139 

monitoring scheme. To the best knowledge of the authors, this is the first attempt to provide cost 140 

estimates for large-scale monitoring for European policy instruments, using statistical estimates of 141 

the number of farms that should be sampled to reliably detect changes in biodiversity.  142 

 143 

Materials and methods 144 

Method outline 145 

This study aimed to develop a monitoring scheme in which a 10% change in species richness in 5 146 

years could be identified with a 10% probability error for farmland biodiversity per dominant farm 147 

type per region in Europe. To achieve this, the study combined results from four different 148 

components. First, we obtained an estimate for the number of farms that should be sampled per 149 

region in Europe, by applying a power analysis on empirical data of species richness of four taxa for 150 

12 case studies. Second, we delineated regions in Europe based on the country boundaries, 151 
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environmental conditions and farm composition. Third, we applied the farm sample size estimates to 152 

all regions of Europe with different indicator set options. Fourth, we computed the costs for these 153 

monitoring scenarios and compared them to the CAP budget (2014–2020).  154 

The four steps are explained in brief hereafter, a more detailed explanation of methods and 155 

uncertainties can be found in Appendix S1 in Supporting Information. 156 

 157 

Source of empirical data 158 

In 12 European case studies (i.e. specific farm type in one region), 10–20 farms were sampled. These 159 

case studies were part of the BioBio project (Fig. 1, full project description in Herzog et al. 2012).  160 

 161 

Within each case study region, farms were randomly selected. For the purpose of this paper, the 162 

farm types (sensu EC 1985) were aggregated into four categories, namely (i) field crops and 163 

horticulture, (ii) specialist grazing livestock, (iii) mixed crops and livestock and (iv) permanent crops.  164 

Farms were sampled using an indicator set which was developed with stakeholders and includes 165 

minimal information redundancy (Herzog et al. 2012, ch. 2). The indicator set contained 23 indicators 166 

spanning four categories: genetic, species and habitat diversity and farm management, of which the 167 

species category included sampling of four taxa: vascular plants (from here on referred to as plants), 168 

earthworms, spiders and bees (Herzog et al. 2013). Farmer interviews and habitat mapping were 169 

done for all the land managed by the farmer. Per farm, each habitat type was randomly sampled 170 

once for all of the four taxa on the same location. Vegetation samples (10 m × 1 m in linear and 10 m 171 

× 10 m in areal habitats) consisted of recording all plant species and allocating cover estimates at 5% 172 

precision. Earthworms were sampled via extraction for 10 minutes with an expellant solution (diluted 173 

allyl isothiocyanate: AITC) and then hand sorted for 20 minutes. Three subsamples were taken (30 174 

cm x 30 cm x 20 cm deep) during one visit. Spiders were suction-sampled from soil surface and 175 

vegetation using a modified leaf blower (Stihl SH 86-D). On three different days, five areas of 35.7 cm 176 

diameter were sampled within each selected habitat. Bees were sampled during good weather 177 

conditions with a handheld net along a 100 m × 2 m transect for 15 min. Bees were sampled on three 178 

different days. A more detailed description of the standardized sampling protocols can be found in 179 

Dennis et al. (2012).  180 

Species richness was computed per taxa per farm (Fig. 2). Means and standard deviations of the 181 

observed species richness were computed using species rarefaction-extrapolation curves (Chao et al. 182 

2014). An example of the variation in species richness within a case study region is shown in Figure 3. 183 

Species accumulation curves for all case studies and all four taxa are presented in Appendix S1.  184 

 185 

Budgetary cost calculations and estimates  186 
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The costs and the number of hours spent preparing fieldwork, collecting data and processing field 187 

samples (i.e. taxonomic sorting and identification) were recorded and used to compute the average 188 

efforts required for sampling a standardized farm (Targetti et al. 2014). The costs of monitoring farms 189 

throughout Europe were estimated using labour cost differences between European countries 190 

(Targetti et al. 2012). The estimation of the total budget required per sampled farm considered five 191 

different components: data collection, supervision, data processing and reporting, data quality 192 

assurance and administration (Busch & Trexler 2003). The quantification method for each 193 

component can be found in Appendix S2. 194 

 195 

Required number of farms that need to be sampled 196 

Based on the variability of the empirical data for the four taxa, estimates could be made of the 197 

number of farms required to be sampled to detect statistically significant trends in species richness 198 

per major farm type: the required farm sample size.  199 

Required farm sample sizes were computed for detecting a change in the average species richness 200 

for each of the four taxa between two consecutive sampling rounds. The variance of the estimated 201 

average difference  in species richness between two sampling rounds is given by the summed 202 

variances of estimated average species richness found in each sampling round minus their covariance 203 

(Brus & Noij 2008): 204 

 205 

   eqn. 1 206 

The variance of the estimated average species richness (  and  in equation 1) is 207 

determined by the variation of the species richness per farm in the sampled population of farms, the 208 

sample size (number of observed sampling units [farms]) and the type of sampling design (e.g. simple 209 

random or stratified random). Since farms were selected fully randomly within case study regions, 210 

the variance of the estimated average species richness in sampling round 1, can simply be estimated 211 

by: 212 

 213 

          eqn. 2 214 

With  being the population variance of the species richness per farm in sampling round 1, and n 215 

the sample size (number of observed farms per sampling round). Using the means and standard 216 

deviations of species richness per farm, derived from the rarefaction procedure, 1000 random sets of 217 
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species richness for each farm were drawn from a normal distribution. For each set, the population 218 

variance per case study region was computed. 219 

The covariance of the two estimated averages (third term in Equation 1) depends on the correlation 220 

of the species richness per farm in the two sampling rounds and the proportion of farms that is 221 

revisited and observed at both times, referred to hereafter as the matching proportion. The stronger 222 

the correlation and the larger the matching proportion, the larger the covariance and the smaller the 223 

variance of the estimated change in average species richness. For simple random sampling, the 224 

covariance of the estimated average species richness in the two sampling rounds equals (Brus & Noij 225 

2008): 226 

      eqn. 3 227 

With being the population covariance of the species richness per farm in sampling round 1 and 2, 228 

p the matching proportion, and r1,2 the correlation of the species richness per farm in sampling round 229 

1 and 2. The population standard deviations in two sampling rounds S1 and S2 were assumed to be 230 

equal. The matching proportion was assumed to be 80% and the correlation between the first and 231 

the second sampling round, r1,2, was estimated to 0.9 for plants and 0.75 for the three invertebrate 232 

groups based on empirical time series of species richness of previous projects (Aviron et al. 2009; 233 

M.W. Lüthi, unpublished results). Since these values are based on relatively few data, an uncertainty 234 

bandwidth of 0.1 was assumed. This was incorporated by drawing, for each of the 1000 random sets 235 

of species richness, a temporal correlation from a uniform distribution of 0.85–0.95 for plants and 236 

0.7–0.8 for the invertebrates.  237 

Finally, the following requirements on the quality of the statistical tests were defined: the probability 238 

of wrongly identifying a 10% change in the total number of species should be smaller than 10% (type 239 

I error); the probability of not identifying an actual change of 10% of the average species richness 240 

should also be smaller than 10% (type II error). Given these requirements, the sample sizes can be 241 

computed by a power analysis (Brus & Noij, 2008) with a 95% confidence interval that includes the 242 

uncertainty of the original species richness data and the uncertainty bandwidth of the temporal 243 

correlation. The power analysis is based on two key equations (Brus & Noij 2008; Brus et al. 2011), 244 

one to compute the critical value for the difference beyond which the null-hypothesis H0 =0 is 245 

rejected (i.e. there is a 10% change in species richness): 246 

 247 

        eqn. 4 248 

 249 

And a second one to compute the power of the test (required to be above 90%): 250 
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 251 

        eqn. 5 252 

 253 

Here 𝛼 refers to the type I error, 𝛽 to the type II error.  (equation 4) is the 254 

quantile corresponding with a cumulative lower probability of 1- 𝛼/2 for a normal distribution with 255 

mean 0 and variance .  (equation 5) is the cumulative lower probability of 256 

, for a normal distribution with mean  and variance .  257 

 258 

Sampling design at European level  259 

To allow for stratified sampling of dominant farm types, 25 countries in Europe were divided in 260 

homogeneous regions (Fig. 1) (Jongman et al. 2012). Region delineation was determined by the farm 261 

types (according to the Farm Accountancy Data Network, FADN), country boundaries, and the 262 

environmental zone (Metzger et al. 2005). The spatial units used were the European Nomenclature 263 

of Territorial Units for Statistics level 2 (NUTS2). FADN farm types were ranked based on their 264 

surface. Country boundaries were used to take into account national differences in the agro-265 

environmental schemes. Each NUTS2 region was described by one to four dominant farm types 266 

(based on a cover of at least 75% of the total utilized agricultural area). Per country, comparable 267 

NUTS2 regions were merged while respecting boundaries determined by different environmental 268 

zones. A maximum of five regions per country was set to avoid having too many small regions 269 

(Jongman et al. 2012). The composition of dominant farm types per region can be found in Appendix 270 

S3. 271 

The smallest reporting unit for monitoring was the “Farm type per region” with the required number 272 

of farms to be sampled being expressed as the percentage of the total number of farms per farm 273 

type per region. In compliance with existing recommendations (Elbersen et al. 2010), a minimum 274 

sample size of 15 farms per farm type per region was retained. 275 

Percentages of the total number of farms of that farm type per region could only be derived for the 276 

nine case study regions for which FADN data was available on the regional farm composition, namely 277 

Austria, France, Germany, Hungary, Italy, the Netherlands, Spain (Dehesa), Spain (olives) and Wales.  278 

A five-yearly frequency of monitoring (sampling interval) was assumed following the 279 

recommendation of the European Biodiversity Observation Network project (Brus et al. 2011). 280 

According to the temporal sensitivity of the Essential Biodiversity Variables (Pereira et al. 2013), this 281 

frequency is in line with the dynamics of important biodiversity variables such as «Species 282 

distribution», «Ecosystem structure» and «Community composition». Instead of sampling all farms 283 
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once per five years, each year, 20% of the farms would be sampled over a five year period to ensure 284 

a continuous stream of data, to allow for a more resource-efficient approach and to reduce the 285 

effect of annual climate variability. 286 

 287 

Indicator scenarios 288 

Nine scenarios were developed to allow for comparison between different options for information 289 

output based on three different indicator sets and on three levels of biodiversity data robustness 290 

(Fig. 4). The scenarios were applied to all identified regions in Europe. This implies the underlying 291 

assumption that the sampled farms were on average representative for all of Europe and ignores 292 

regional variability in species richness across Europe. This crude assumption was necessary because 293 

no other data sets were available to allow for a more sophisticated extrapolation method. For more 294 

reflection on the impact of this assumption see Appendix S1. 295 

 296 

[Include Figure 4 here] 297 

 298 

There are three scenarios to consider: a full indicator set, a full indicator set without bees and a 299 

reduced indicator set (only plants). For each indicator set, three additional scenario options were 300 

developed using the estimates of the required farm sample size per species indicator per farm type. 301 

For the High, Average and Low scenario options, respectively, the highest, the average and the 302 

lowest sample size percentage of all four taxa per farm type were applied. Whereas the High 303 

scenario option offers a first estimation for an effective monitoring scheme, the Low scenario reflects 304 

a case in which minimal monitoring is organized at European level. It is assumed that countries will 305 

then develop complementary monitoring at national or regional level. 306 

The combination of options leads to nine cost scenarios for a European farmland biodiversity 307 

monitoring scheme with different percentages of farms of a farm type that should be sampled per 308 

region and with different information outputs.  309 

 310 

Comparison of cost scenarios with the CAP budget 311 

To compute cost estimates, the required farm sample sizes of the scenarios were multiplied by the 312 

monitoring costs for a standardized farm for each country (Table S2.2 in Appendix S2). The computed 313 

costs were placed into the context of the budget allocated to environmental and biodiversity 314 

objectives of the CAP for 2014–2020. 315 

The total CAP budget for First and Second Pillar measures is 408 billion Euro for the period of 2014–316 

2020. The “green” budget, which are the funds allocated for environmental and biodiversity targets, 317 
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makes up 30% of the total budget (the “greening” package of Pillar 1 and earmarked budget of Pillar 318 

2 [Péer et al. 2014]). The total “green” budget was estimated at 122·5 billion Euro for the whole 319 

period with an indicative annual budget of 17·5 billion Euro.  320 

 321 

Results 322 

The estimated number of farms that should be sampled for the detection of a 10% change in species 323 

richness per farm type over a five year period differed between case studies and between farm types 324 

from 19 to 465 farms. In general, monitoring bees required the largest, and monitoring plants the 325 

smallest number of farms to be sampled. On average the Permanent Crops farm type required the 326 

largest farm sample sizes (Table 1). 327 

 328 

The required farm sample size in the High scenarios mostly followed the percentage of farms that 329 

should be sampled for the bee and plant indicators respectively (Table 2). Only in the case of the 330 

High scenario for Specialist grazing livestock, the earthworms showed the highest variability, 331 

requiring a higher number of farms to be sampled for a representative and reliable estimate.  332 

 333 

Depending on the scenario chosen, approximately 184k (High scenario, full indicator set), 38k 334 

(Medium scenario, full indicator set exclusive bees) and 5·6k (Low scenario, reduced indicator set) 335 

farms would need to be sampled, which corresponds to 6·3%, 1·3% and 0·2% respectively of the total 336 

number of European farms. The difference between the full set with and without bees for High and 337 

Low scenarios is 77k and 15k farms, respectively. 338 

An implementation of the full indicator set for the High scenario, would require 0·74% of the CAP 339 

budget and 2·48% of the “green” CAP budget (443 Mio € annually) (Table 3). Not monitoring the bees 340 

would reduce the costs considerably (a cost reduction of 79-126 Mio € per year), namely to 0·53% of 341 

the CAP budget and to 1·75% of the “green” CAP budget. The reduced indicator set for the Low 342 

scenario would require 0·01% of the total CAP budget and 0·04% of the “green” CAP budget (7 Mio € 343 

annually).  344 

 345 

In general, the estimated CAP budget allocation in seven of the nine scenarios remained below the 346 

lowest budget allocations proposed in the literature (i.e. the European Commission proposed 0·5% 347 

[2004]). When considering the “green“ CAP budget, five of the nine scenarios fulfilled this criterion.  348 

 349 

Discussion 350 

The results provide an informed estimate of the required sampling design, sample size and costs for 351 

farmland biodiversity monitoring for Europe. Depending on the scenario chosen, between 6·3% and 352 
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0·2% of the total number of European farms would need to be sampled, which would require 353 

between 0·74% and 0·01% of the CAP budget (Table 3). Of the three fauna indicators, the bees 354 

demonstrated the highest data variability and therefore required the largest farm sample size. 355 

Estimates are contingent on several assumptions and simplifications which do not necessarily cover 356 

the expected complexity of reality. The proposed sampling design is not presented as the ideal 357 

monitoring scheme, but rather as a starting point for discussions and further refinements. For this 358 

purpose, the estimates are presented at the regional scale (Appendix S1), to provide input for the 359 

development of or to complement existing monitoring schemes at national or regional scales. 360 

 361 

Validity of the results 362 

The first important methodological limitation is that the estimates of the required farm sample sizes 363 

are based on species data from only four taxa, which serve as proxies for the numerous other species 364 

depending on European farmland. The choice of plants, earthworms, spiders and bees as farmland 365 

biodiversity indicators was based on scientific robustness, iterative stakeholder consultations and 366 

feasibility (Herzog et al. 2013). These criteria increase the potential acceptance and implementation 367 

of the indicator set (Danielsen et al. 2010). Future monitoring could increase the number of taxa 368 

included or invest in data integration between existing monitoring schemes to increase the 369 

sensitivity for specific changes in agricultural management practices (Henry et al. 2008). 370 

A second limitation is that the data used were gathered using a single sampling approach whereas 371 

the sampling techniques could be revised to reduce data variability (for bees see e.g. Fortel et al., 372 

2014). Additionally, the proposed monitoring scheme uses the farm as a monitoring unit to focus on 373 

the scale at which agricultural management decisions are taken. For many biodiversity and 374 

ecosystem service estimates, the inclusion of information on larger-scale processes requires also 375 

monitoring at a landscape scale (Geijzendorffer & Roche 2013; Schneider et al. 2014). The cost 376 

estimates indicate that even if additional monitoring efforts at landscape scale doubled monitoring 377 

costs, six out of the nine scenarios would still remain below the 0·5% boundary of the total CAP 378 

budget.  379 

The third important limitation is that the empirical data base stems from only twelve case studies, 380 

collected in one year. For the extrapolation, the variability of species diversity was assumed to be 381 

similar per farm type throughout Europe. As a consequence of the small empirical data base in 382 

comparison to the total number of farms in Europe, the estimated farm sample sizes should be 383 

considered as coarse rather than precise indications, and monitoring cost estimates should be 384 

treated with caution. Still, the existence of an empirical data base – albeit small – is a major asset to 385 

evaluate the effort needed to implement a monitoring scheme. The presented findings should be 386 
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considered as a starting point for the urgently needed debate on the feasibility of a European 387 

biodiversity monitoring scheme (Council of European Union 2010).  388 

 389 

Monitoring scenarios 390 

The full indicator set (four taxa, habitat and farm management indicators, including genetic diversity) 391 

was developed based on minimum information overlap in the BioBio project. It covers five of the six 392 

Essential Biodiversity Variables (EBV) classes (Pereira et al. 2013), namely Genetic Composition, 393 

Species Populations, Community Composition, Ecosystem Function and Ecosystem Structure. This 394 

indicates good overall coverage of farmland biodiversity, in comparison to the reporting for the 395 

Habitat Directives which covers 3 EBV classes (Geijzendorffer et al., 2015). The proposed monitoring 396 

scheme was developed to capture broad biodiversity trends to assess the influence of large scale 397 

changes such as adaptations of European policies like the CAP reform. With 0·74% of the CAP budget 398 

(2·48% of the budget allocated to “green targets”), information about the biodiversity status on 6·3% 399 

of all farms in Europe could be obtained (the High scenario and full indicator set option). 400 

The proposed farm sample sizes would allow to detect a 10% change in species richness per farm 401 

type per region over five years, which is a rather crude in comparison to the annual change of 1% 402 

required for the monitoring of red list species and threatened habitats according to the European 403 

Habitats Directive (EC 2005). However, whereas the red list monitoring focuses on the monitoring of 404 

individual species, the presented sampling design aims to detect large changes in species richness 405 

per taxa across many different habitat types on farmland under dynamic farm management practices 406 

per region and the 10% change in species richness should therefore be considered as a starting point 407 

rather than an aim per se. Although this study focused on species richness, as a sole indicator for 408 

trends in biodiversity it is obviously limited and further work such as on the EBVs (Schmeller et al. 409 

2015) could identify other indicators of importance for farmland biodiversity. Some of these 410 

indicators, involving e.g. species identity, could already be quantified from the data gathered with 411 

this monitoring protocol, others might require complementary data and/or monitoring. According to 412 

the results, the 10% error probability is only achieved for all four taxa under the High scenario. The 413 

required farm sample size estimates could be further adjusted by taking into account regional 414 

species pool patterns, by adjusting for the spatial biodiversity patterns within Europe (e.g. 415 

earthworm distribution patterns [Entling et al. 2012]) or by including alternative  sampling methods. 416 

Ideally the proposed monitoring scheme would not be implemented standalone, but serve as a 417 

backbone for the integration of data from existing monitoring scheme to further strengthen the 418 

interpretation of trends on farmland. Especially the presented Low scenarios and the reduced 419 

indicator set options should be complemented by additional targeted monitoring; for instance by 420 

focusing on endangered species, or on biodiversity hotspots or sinks (Kleijn et al. 2011), by using 421 
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remote sensing information (Duro et al. 2007) or by integrating them with existing monitoring 422 

schemes. Still, the focus of the proposed monitoring scheme, namely detecting the impact of 423 

changes in management (resulting from policy measures) on farmland biodiversity should be 424 

considered. For instance, the proposed monitoring design can be combined with bird data, but the 425 

high mobility of birds and their dependence on landscape patterns instead of individual farms, 426 

restrict the potential of data integration. 427 

The three invertebrate groups included in the proposed full indicator set (earthworms, spiders, bees) 428 

are related to major ecosystem services (decomposition, pest control, pollination) which are 429 

particularly relevant in an agricultural context. The reduced indicator set obviously lacks this 430 

information. It is nonetheless a commonly used combination of indicators (i.e. habitat and plant 431 

data) as proxies in biodiversity monitoring (the UK Countryside Survey 432 

(http://www.countrysidesurvey.org.uk), the Swedish NILS [Ståhl et al. 2011]). The reduced indicator 433 

set still comprises farm management information, which allows analysis of causal relationships 434 

between changes in species richness and agricultural practices. Although methods for cross 435 

monitoring scheme assessments are not yet well developed (Henry et al. 2008), already the reduced 436 

indicator set including environmental and management information, plant and habitat data could 437 

provide a central backbone for data integration of existing monitoring schemes and could be linked 438 

to alternative fauna indicators.  439 

 440 

Recommendations for future monitoring 441 

Monitoring is not only needed to determine progress towards an objective, but can also render 442 

investments more effective, like in the case of controlling invasive species (Bogich, Liebhold & Shea 443 

2008), the protection of nature areas (Balmford & Gaston 1999) or in avoiding costly (irreversible) 444 

losses (Armsworth et al. 2012). The presented farmland biodiversity monitoring scheme provides a 445 

starting point for further refinement and planning purposes at European, national or regional scale. 446 

The full indicator set originated from an extensive stakeholder consultation process followed by an 447 

information redundancy analysis. Therefore, decisions to include fewer indicators or lower sampling 448 

densities should be done only after extensive additional analysis.  449 

There is potential to use the proposed sampling design to integrate data from different monitoring 450 

schemes, as well as that the outputs of the monitoring are likely to inform multiple policy objectives 451 

rather than just the CAP. Regardless of the potential, the implementation of the proposed 452 

monitoring scheme seems already economically feasible and sharing of its costs across policy 453 

instruments politically attractive, especially for a land use sector that is supposed to provide 454 

important ecosystem services for the future. 455 

http://www.countrysidesurvey.org.uk/
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Adaptation of monitoring schemes over time is common practice (see for instance LUCAS [EUROSTAT 456 

2009] or the NILS [Ståhl et al. 2011]) to improve data collection efficiency and to ensure the 457 

relevance of data collected with regards to new changes in policies, agricultural management or new 458 

biodiversity trends, e.g. the recently identified bee mortality. Whereas such adaptations potentially 459 

cause problems in terms of interoperability of data over years, it is unlikely that everything can be 460 

foreseen in detail in advance and proposed monitoring schemes should have a certain degree of 461 

flexibility (Lindenmayer & Likens 2009). The monitoring scheme proposed in this paper can be 462 

adapted by changing methods, adding or removing indicators, adding or removing regions or 463 

countries and by adjusting the number of farms to be sampled. 464 
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Tables 647 

Table 1. Required sample size (number of farms to be sampled) per case study per species indicator to identify a 10% change in species richness in five years 648 

Case study region 

Estimated number of farms to be sampled within the case study region and of the indicated 

farm type to allow for the detection of a 10% change in species richness in five years 

(confidence interval 95% included in brackets).  

No Country Farm type Plants Earthworms  Spiders Bees  

1 Austria  Field crops and horticulture (n=16)  52 (36 -68) 87 (48 – 126) 105 (77 – 133) 427 (274 – 580) 

2 Bulgaria  Specialist grazing livestock (n=16)  46 (35 – 57) 142 (61 – 223) 65 (38 – 92) 148 (95 – 201) 

3 France Field crops and horticulture (n=16)  37 (27 -47) 22 (12 – 32) 22 (13 – 32) 137 (101 – 173) 

4 Germany Mixed crops and livestock  (n=16)  27 (18 – 36) 24 (10 – 38) 42 (26 – 58) 465 (239 – 691) 

5 Hungary  Specialist grazing livestock (n=18)  37 (27 – 47) 356 (250- -462) 239 175 – 303) 247 (115- -379) 

6 Italy  Permanent crops (n=18)  25 (16- -34) 22 (101 – 341)1 144 (76 – 212) 167 (105 – 229) 

7 The Netherlands  Field crops and horticulture (n=14)  29 (19 – 39) 110 (39 – 181) 197 (132 – 262) 164 (31 – 297) 

8 Norway  Specialist grazing livestock (n=12)  20 (14 –b26) 38 516 – 60) 42 (25 – 59) 50 (22 – 78) 

9 Spain Specialist grazing livestock (n=10)  19 (13 – 25) 123 (35 – 211)) 47 (27 – 67) 77 (30 – 124) 

10 Spain  Permanent crops (n=20)  140 (113 – 167) 226 (148 – 304) 172 (133 – 211) 279 (164 – 394) 

11 Switzerland  Specialist grazing livestock (n=19)  50 (39 – 61) 27 (12 – 42) 97 (67 – 127) 129 (82 – 176) 

12 Wales Specialist grazing livestock (n=20)  22 (16 – 28) 22 (11 – 33) 39 (28 – 50) 59 (22 – 96) 



22 
 

Table 2: Required farm sample percentage for each of the four farm types for the full and the 649 

reduced indicator sets and for the High (H), Average (A) and Low (L) scenarios  650 

 

Full indicator set Full indicator set excl. Bees Reduced indicator set 

H A L H A L H A L 

Field crops and 
horticulture (n=3) [%] 

5·12 1·96 0·59 3·45 0·87 0·16 0·62 0·32 0·16 

Grazing livestock 
(n=3) [%] 

10·7

7 

2·72 0·87 10·77 2·72 0·57 1·12 0·42 0·23 

Mixed (n=1) [%] 
4·91 4·91 4·91 0·44 0·44 0·44 0·28 0·28 0·28 

Permanent crops 
(n=2) [%] 

1·70 0·75 0·52 1·38 0·75 0·52 0·85 0·28 0·06 
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Table 3: Monetary and relative cost estimates for the nine sampling scenarios, in relation to the total 651 

CAP budget (2014–2020; 408·3 billion Euro) or to the part allocated to environmental and 652 

biodiversity targets, the “green” CAP budget (122·5 billion Euro). Numbers in grey present budget 653 

shares below 0·5%, the lowest allocation found in literature (EC 2004) 654 

 Reference budget  Scenarios options 
High farm 
sample size 
option 

Average farm 
sample size 
option 

Low farm 
sample size 
option 

Annual cost estimations 
for the 5 years rolling 
survey 

Full indicator set Mio € 433 Mio € 179 Mio € 103 

Full set excl. Bees Mio € 307 Mio € 85 Mio € 24 

Reduced indicator 
set 

Mio € 28 Mio € 13 Mio € 7 

Percentage of the total 
annual CAP budget 

Full indicator set 0·74% 0·31% 0·18% 

Full set excl. Bees 0·53% 0·15% 0·04% 

Reduced indicator 
set 

0·05% 0·02% 0·01% 

Percentage of the 
annual CAP budget 
allocated to green 
targets 

Full indicator set 2·48% 1·02% 0·59% 

Full set excl. Bees 1·75% 0·15% 0·14% 

Reduced indicator 
set 

0·16% 0·08% 0·04% 

 655 

 656 

657 



24 
 

Figures 658 
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Figure 1: Overview of the case study regions and the zones that served to develop the spatial 660 

sampling design. Numbers of case studies correspond to those in Table 1. 661 
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 662 

Figure 2. Overview of the computation of the species richness per taxa per farm. 663 
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Figure 3: Example of accumulation curves for plant species richness in 16 farms in the French 665 
case study. Dots with bars are observed species richness with 95% confidence interval. Solid 666 
curves are species rarefaction curves, dotted curves are extrapolation curves. As the taxa were 667 
sampled using a stratified sampling approach, the number of samples (x-axis) is identical to the 668 
number of habitat types found per farm. 669 

670 
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 671 

 672 

Figure 4: Indicators included per scenario as well as estimates of the farm sample sizes for the Field 673 

crops and horticulture farm type (% of the total number of farms of that farm type per region). The 674 

information output is reduced between the indicator sets from left to right and the robustness of the 675 

data output decreases from high (H) over average (A) to low (L).  676 
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