998 research outputs found

    Predicting brain activation maps for arbitrary tasks with cognitive encoding models

    Get PDF
    A deep understanding of the neural architecture of mental function should enable the accurate prediction of a specific pattern of brain activity for any psychological task, based only on the cognitive functions known to be engaged by that task. Encoding models (EMs), which predict neural responses from known features (e.g., stimulus properties), have succeeded in circumscribed domains (e.g., visual neuroscience), but implementing domain-general EMs that predict brain-wide activity for arbitrary tasks has been limited mainly by availability of datasets that 1) sufficiently span a large space of psychological functions, and 2) are sufficiently annotated with such functions to allow robust EM specification. We examine the use of EMs based on a formal specification of psychological function, to predict cortical activation patterns across a broad range of tasks. We utilized the Multi-Domain Task Battery, a dataset in which 24 subjects completed 32 ten-minute fMRI scans, switching tasks every 35 s and engaging in 44 total conditions of diverse psychological manipulations. Conditions were annotated by a group of experts using the Cognitive Atlas ontology to identify putatively engaged functions, and region-wise cognitive EMs (CEMs) were fit, for individual subjects, on neocortical responses. We found that CEMs predicted cortical activation maps of held-out tasks with high accuracy, outperforming a permutation-based null model while approaching the noise ceiling of the data, without being driven solely by either cognitive or perceptual-motor features. Hierarchical clustering on the similarity structure of CEM generalization errors revealed relationships amongst psychological functions. Spatial distributions of feature importances systematically overlapped with large-scale resting-state functional networks (RSNs), supporting the hypothesis of functional specialization within RSNs while grounding their function in an interpretable data-driven manner. Our implementation and validation of CEMs provides a proof of principle for the utility of formal ontologies in cognitive neuroscience and motivates the use of CEMs in the further testing of cognitive theories

    Beyond rescue: Implementation and evaluation of revised naloxone training for law enforcement officers

    Full text link
    ObjectiveThis study describes the implementation and evaluation of revised opioid overdose prevention and education of naloxone training for law enforcement officers (LEOs) that added: (1) a recovery testimony and (2) the process for deputy‐initiated referrals postnaloxone administration.Design and SampleEvaluation regarding the naloxone training included a pre‐ and postopioid overdose knowledge surveys (N = 114) and subsequent 1‐year postnaloxone training outcomes.ResultsPre‐ and posttest scores for all knowledge outcome measures were statistically significant (p < .001) with favorable comments pertaining to the recovery testimony. Out of 31 individuals who received naloxone, 6 individuals (19.4%) continue to be in treatment or received some treatment services. The most common symptoms reported were unconsciousness/unresponsiveness (40.5%), abnormal breathing patterns (24.3%), and blue lips (16.2%). The majority of the calls (65.6%) were to a residential area, and the time for naloxone revival ranged <1–10 min (M = 3.48; SD = 2.27).ConclusionAs nearly 20% of individuals sought treatment after a LEO‐initiated referral, it is recommended that other agencies consider the referral process into the training. Future research will investigate the impact of the recovery testimony in reducing the stigma of addiction.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139953/1/phn12365_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139953/2/phn12365.pd

    CFMC Consulting Design

    Get PDF
    CFMC is a group of independent farmers market managers and directors that operate within the city of Chicago. They have the common goal to educate their consumers and provide access to locally grown, nutritious food. During our project, we sought to determine how to properly digitally educate CFMC’s end users. Through creative design processes and collecting qualitative and quantitative data, we worked towards understanding how to enhance client experiences and needs

    Phase separation of signaling molecules promotes T cell receptor signal transduction

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of American Association for the Advancement of Science for personal use, not for redistribution. The definitive version was published in Science 352 (2016): 595-599, doi:10.1126/science.aad9964.Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micron- or submicron-sized clusters. However, the functional consequences of such clustering has been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phoshophorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases, and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling.This work was supported by the HCIA program of HHMI, the NIH (R01-GM56322 to M.K.R.) and Welch Foundation (I–1544 to M.K.R.). X.S. was supported by CRI Irvington postdoctoral fellowship. J.A.D. was supported by NRSA F32 award 5-F32-DK101188. E.H. was supported as a fellow of the Leukemia and Lymphoma Society. J.O. was supported by funds from Tobacco-Related Disease Research Program of the University of California (19FT-0090).2016-10-0

    Superconductivity and Spin Fluctuations in the Electron-Doped Infinitely-Layered High Tc Superconductor Sr0.9_0.9La0.1_0.1CuO2_2 (Tc=42K)

    Full text link
    This paper describes the first 63-Cu NMR study of an electron-doped infinitely-layered high Tc superconductor Sr0.9_0.9La0.1_0.1CuO2_2 (Tc=42K). The spin dynamics in the normal state above Tc exhibits qualitatively the same behavior as some hole-doped materials with significantly enhanced spin fluctuations. Below Tc, we observed no signature of a Hebel-Slichter coherence peak, suggesting an unconventional nature of the symmetry of the superconducting order parameter.Comment: Invited Paper to SNS-95 Conference (Spectroscopies on Novel Superconductors 1995 at Stanford). Also presented at Aspen Winter Conference on Superconductivity and Grenoble M^2S-HTSC in 199

    Negative electronic compressibility and tunable spin splitting in WSe2

    Get PDF
    This work was supported by the Engineering and Physical Sciences Research Council, UK (Grant Nos. EP/I031014/1, EP/M023427/1, EP/L505079/1, and EP/G03673X/1), TRF-SUT Grant RSA5680052 and NANOTEC, Thailand through the CoE Network. PDCK acknowledges support from the Royal Society through a University Research Fellowship. MSB was supported by the Grant-in-Aid for Scientific Research (S) (No. 24224009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.Tunable bandgaps1, extraordinarily large exciton-binding energies2, 3, strong light–matter coupling4 and a locking of the electron spin with layer and valley pseudospins5, 6, 7, 8 have established transition-metal dichalcogenides (TMDs) as a unique class of two-dimensional (2D) semiconductors with wide-ranging practical applications9, 10. Using angle-resolved photoemission (ARPES), we show here that doping electrons at the surface of the prototypical strong spin–orbit TMD WSe2, akin to applying a gate voltage in a transistor-type device, induces a counterintuitive lowering of the surface chemical potential concomitant with the formation of a multivalley 2D electron gas (2DEG). These measurements provide a direct spectroscopic signature of negative electronic compressibility (NEC), a result of electron–electron interactions, which we find persists to carrier densities approximately three orders of magnitude higher than in typical semiconductor 2DEGs that exhibit this effect11, 12. An accompanying tunable spin splitting of the valence bands further reveals a complex interplay between single-particle band-structure evolution and many-body interactions in electrostatically doped TMDs. Understanding and exploiting this will open up new opportunities for advanced electronic and quantum-logic devices.PostprintPeer reviewe

    The Demonstration of a Light Extinction Tomography System at the NASA Glenn Research Center's Icing Research Tunnel

    Get PDF
    A prototype light extinction tomography system has been developed for acquiring real-time in-situ icing cloud uniformity and density measurements in the NASA Glenn Research Center's Icing Research Tunnel (IRT). These measurements are currently obtained through periodic manual calibrations of the IRT. These calibrations are time consuming and assume that cloud uniformity and density does not greatly vary between the periodic calibrations. It is envisioned that the new light extinction tomography system will provide the means to make these measurements in-situ in real-time and minimize the need for these manual calibrations. This new system uses the principle of light extinction tomography to measure the spray density and distribution in the test section. The prototype system was installed and successfully demonstrated in the Icing Research Tunnel in early 2018. Data sets were acquired for several standard spray and simulated fault conditions to assess system capability and sensitivity. This paper will describe the prototype light extinction system, the theory behind it, and the results of the demonstration test that was conducted in the IRT

    Spin and valley control of free carriers in single-layer WS2

    Get PDF
    Data are available from http://dx.doi.org/10.17630/a25b95c6-b9e8-4ecf-9559-bb09e58a7835The semiconducting single-layer transition metal dichalcogenides have been identified as ideal materials for accessing and manipulating spin- and valley-quantum numbers due to a set of favorable optical selection rules in these materials. Here, we apply time- and angle-resolved photoemission spectroscopy to directly probe optically excited free carriers in the electronic band structure of a high quality single layer (SL) of WS2 grown on Ag(111). We present a momentum resolved analysis of the optically generated free hole density around the valence band maximum of SL WS2 for linearly and circularly polarized optical excitations. We observe that the excited free holes are valley polarized within the upper spin-split branch of the valence band, which implies that the photon energy and polarization of the excitation permit selective excitations of free electron-hole pairs with a given spin and within a single valley.PostprintPeer reviewe

    Concert recording 2017-10-12

    Get PDF
    [Track 1]. Concertino for trombone, op. 4. I. Allegro maestoso / Ferdinand David -- [Track 2]. Sonata for trombone and piano. II. Andante molto sostenuto I. Allegro / Kazimierz Serocki -- [Track 3]. Selections from Pictures at an exhibition. Bydlo Promenade / Modest Mussorgsky arranged by Kenneth Gehrs -- [Track 4]. A winter\u27s night / Kevin McKee -- [Track 5]. Sonata for bass trombone. II. Andantino I. Allegro non troppo / Patrick McCarty -- [Track 6]. Achieved is the glorious work from Creation / Franz Joseph Haydn -- [Track 7]. Etude no. 15 / Marco Bordogni -- [Track 8]. Suite for four trombones. I. Intrada VI. Arietta III. Interludium / Serocki
    • 

    corecore