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Abstract 

Activation of various cell surface receptors triggers the reorganization of downstream signaling 

molecules into micron- or submicron-sized clusters. However, the functional consequences of 

such clustering has been unclear. We biochemically reconstituted a 12-component signaling 

pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with 

actin assembly. When TCR phoshophorylation was triggered, downstream signaling proteins 

spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro 

and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded 

phosphatases, and enhanced actin filament assembly by recruiting and organizing actin 

regulators. These results demonstrate that protein phase separation can create a distinct physical 

and biochemical compartment that facilitates signaling. 

 

One Sentence Summary: Reconstitution of a T cell signaling pathway and correlative cellular 

studies reveal how phase separation of molecules into microclusters can promote biochemical 

reactions and signaling responses.  
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Main Text 

Many cell surface receptors and downstream signaling molecules coalesce into micron- or 

submicron-sized clusters upon initiation of signaling (1, 2). However, the effect of this clustering 

on signal transduction is poorly understood. T cell receptor (TCR) signaling is a well-studied 

example of this general phenomenon (3). TCR signaling proceeds through a series of 

biochemical reactions that can be viewed as connected modules. In the upstream module, the 

TCR is phosphorylated by Lck, a membrane-bound protein kinase of the Src family. TCR 

phosphorylation is opposed by a transmembrane phosphatase, CD45 (3). The phosphorylated 

cytoplasmic domains of the TCR complex recruit and activate the cytosolic tyrosine kinase 

ZAP70 (4).  In the intermediate module, ZAP70 phosphorylates the transmembrane protein LAT 

(Linker for activation of T cells) on multiple tyrosine residues. These phosphotyrosines are 

binding sites for adapter proteins Grb2 and Gads, which further interact with Sos1 (a guanine 

nucleotide exchange factor (GEF) for the small guanosine triphosphatase Ras) or SLP-76 

(another adaptor in TCR signaling). Components of the LAT complex activate several 

downstream modules that mediate calcium mobilization, mitogen-activated protein kinase 

(MAPK) activation, and actin polymerization (5, 6).  

LAT and its binding partners coalesce into micron- or submicron-sized clusters at the plasma 

membrane upon TCR activation (7-10). Elimination of these microclusters by deletion of key 

components (for example, LAT or Grb2) impairs downstream signaling and transcriptional 

responses (5, 11). However, effects due to loss of clusters have not been distinguished from those 

due to loss of component molecules. Nor do we understand the changes in biochemistry and 

consequent signaling that emerge specifically when signaling molecules are organized from an 

unclustered to a clustered state (12). 
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To explore the mechanism of formation and functional consequences of T cell microclusters, 

we reconstituted a TCR signaling pathway from purified components. To substitute for the 

plasma membrane, we used supported bilayers composed of a defined, simple lipid composition. 

We initially reconstituted the intermediate module of the TCR signaling cascade, composed of 

phosphorylated LAT (pLAT), Grb2, and Sos1. Multivalent interactions between these proteins 

(Fig. 1A) are thought to drive the formation of signaling microclusters on the T cell membrane 

(8, 13), although direct experimental evidence for the sufficiency of this mechanism has been 

lacking. We prepared fluorescently labeled pLAT, containing the four C-terminal phospho-

tyrosine residues that are sufficient for TCR signaling (14); this pLAT also contains an N-

terminal His8 tag that allowed its attachment to Ni2+-containing supported lipid bilayers (15). 

pLAT was uniformly distributed (Fig. 1B) and freely diffused on the lipid bilayer (movie S1). 

Upon addition of Grb2 and Sos1, submicron-sized clusters formed within 1 minute and gradually 

grew in size. Cluster formation required tyrosine phosphorylation of LAT (fig. S1D). 

Furthermore, dephosphorylation of pLAT by high concentrations of the soluble protein tyrosine 

phosphatase 1B (PTP1B, 2 µM) caused the clusters to disassemble (Fig. 1B, movie S2). pLAT, 

Grb2, and Sos1 all colocalized within clusters, and clusters did not form if either Grb2 or Sos1 

was omitted (fig. S1E, F). pLAT also clustered with Gads and SLP-76, two other components of 

LAT clusters in cells (6, 7), but less efficiently than with Grb2 and Sos1 (fig. S2A, B). Clustering 

efficiency, however, increased dramatically with the addition of Nck (fig. S2C), an adaptor 

protein known to link SLP-76 to actin regulators (16). 

pLAT, Grb2, and Sos1 clusters exhibited dynamic liquid-like properties. The rounded edges 

of clusters fluctuated (extending and retracting) on a time scale of seconds and clusters 

sometimes fused with one another (movie S2). pLAT molecules exchanged into and out of 
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clusters, as revealed by fluorescence recovery after photobleaching (FRAP) (Fig. 1C). Single 

pLAT molecules diffused rapidly outside of clusters but slowly within them (fig. S3A-C). We 

also observed capture and release of single molecules by clusters (movie S3). These results show 

that pLAT microclusters are liquid-like, phase-separated structures (17, 18) on membranes.  

Both SH3 domains of Grb2 were required for cluster formation, indicating a role of protein 

cross-bridging by this adaptor protein (Fig. 1D and fig. S4A). Clustering initially increased with 

increasing pLAT density but then decreased at higher pLAT densities on the membrane (fig. 

S4B), consistent with a theoretical multivalent interaction model (19). The valency of phospho-

tyrosines on LAT also affected clustering efficiency. Three of the four distal phospho-tyrosines 

in LAT are recognized by the SH2 domain of Grb2 (20). Clustering in vitro progressively 

decreased by mutating one, two, or all three tyrosines and was enhanced by doubling the number 

of tyrosines (Fig. 1E and fig. S5). Together, our data indicate that LAT cluster formation is 

driven by dynamically rearranging, multivalent protein-protein interactions. 

We compared the properties of LAT clusters in cells with those of reconstituted clusters in 

vitro and tested their functional importance. As in vitro, LAT microclusters in T cells sometimes 

fused with one another (fig. S3D). FRAP revealed that molecules exchange into and out of 

clusters in cells faster than in vitro (t1/2 of 12 sec versus 76 sec), possibly due to different cluster 

size (see Supplementary Text) or membrane fluidity. To assess valency dependence in cells, we 

expressed LAT tyrosine mutants with zero, one, two, three, or six Grb2 binding sites in a LAT-

deficient Jurkat T cell line. A minimum of two Grb2 binding sites was required for robust cluster 

formation and the degree of clustering increased with increasing number of phospho-tyrosine 

sites (Fig. 2B). The degree of clustering correlated with activation of MAPK(ERK) (Fig. 2C), 

suggesting that clustering of LAT and its partners is important for TCR signaling.    
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We used our in vitro assay to gain insight into the biochemical reactions that underlie the 

TCR signaling pathway. To LAT and its binding partners, we introduced the upstream signaling 

module consisting of: i) the cytoplasmic domain of the TCR subunit CD3ζ (which is sufficient to 

induce signaling in T cells (21)), ii) Lck, which phosphorylates the TCR, iii) the cytoplasmic 

domain of the tyrosine phosphatase CD45, which opposes this reaction (22), and iv) the protein 

kinase ZAP70, which is recruited to the phosphorylated TCR and phosphorylates LAT (4, 5) 

(Fig. 3A). Initially, unphosphorylated LAT was evenly distributed on the membrane. After ATP 

was added to initiate Lck phosphorylation of CD3ζ, ZAP70 was recruited to the membrane and 

LAT clustered (Fig. 3B; fig. S6A). ZAP70 was enriched in the clusters, as observed in T cells 

(7), whereas CD45 was excluded (Fig. 3B). The exclusion of CD45 was recapitulated in a 

simpler system in which clusters were formed by pLAT, Grb2, and Sos1 (Fig. 3C). The 

cytoplasmic domain of CD45 has a negative charge (pI 6.4). Assays with a series of 

differentially charged proteins revealed that, in general, positive charge favors inclusion into and 

negative charge favors exclusion from LAT clusters (fig. S7 and Supplementary Text). 

Consistent with limited access of CD45 to pLAT in the cluster center, CD45-mediated 

dephosphorylation of pLAT was reduced compared to that in unclustered conditions (Fig. 3D). 

In summary, our data demonstrate that LAT clusters are depleted in the phosphatase CD45 but 

enriched in the kinase ZAP70, which would be expected to promote LAT phosphorylation and 

increase the strength of TCR signaling. 

We sought to integrate a downstream module that controls an important signaling output, 

actin polymerization (23, 24). We attached His-tagged Lck, CD3ζ, and unphosphorylated LAT-

Alexa647 to the supported lipid bilayer and added soluble ZAP70-505-Star, Gads, SLP-76, Nck, 

N-WASp (neuronal Wiskott-Aldrich Syndrome protein), Arp2/3 (Actin-related protein 2 and 3) 
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complex, and rhodamine-labeled monomeric actin to the solution (Fig. 4A). Previous data have 

shown that Nck recruits N-WASp, which in turn activates the Arp2/3 complex to nucleate actin 

filaments (16, 25). When ATP was added to initiate TCR phosphorylation, ZAP70 was recruited 

to the membrane, followed by LAT clustering and then actin polymerization from the LAT 

clusters (Fig. 4B,C and fig. S8). Later, when actin bundles formed, LAT clusters became rod-like 

and aligned with actin bundles (Fig. 4D and movie S4,5). This shape change is reversible, as 

clusters became round following depolymerization of F-actin by Latrunculin A (fig. S9C). In 

summary, we show that actin polymerization is initiated from and can reorganize LAT clusters. 

We next tested if clustering of  Nck affects the efficiency of actin polymerization. In 

principle, actin polymerization could be stimulated by i) recruitment of Nck from solution to the 

membrane, ii) concentration and organization of Nck within clusters, or iii) both effects. To 

isolate spatial distribution as a variable, we attached His10-Nck to Ni-modified lipids in the 

planar bilayer, and added soluble N-WASp, Arp2/3 complex, and actin. Increasing the density of 

Nck on the membrane resulted in a dose-dependent increase in assembly of actin (fig. S10). 

Using a density of Nck (150 molecules/µm2) at which little actin polymerized, we tested whether 

clustering of Nck by pLAT, Gads, and pSLP-76 affected actin assembly. Clustering of Nck 

enhanced total actin assembly on the membrane by 6-fold (Fig. 4E). These results reveal that the 

clustering of actin regulators by LAT promotes actin polymerization beyond what can be 

achieved by recruitment to the membrane. 

In summary, we reconstituted biochemical reactions of TCR signaling in an in vitro system, 

in which the components and their concentrations in the reaction can be controlled, rates can be 

measured, and molecular behaviors can be observed in ways that are difficult to achieve using 

intact cells. We observed multivalent assembly and consequent phase separation of LAT and its 
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binding partners into liquid-like, micron-sized clusters. By manipulating clustering using LAT 

phosphorylation mutants, we show that clustering occurs through analogous mechanisms in vitro 

and in cells, and that clustering promotes MAPK(ERK) signaling. Thus, as in three-dimensional 

phase separation (17, 26), our results demonstrate that phase separation on membranes can create 

an environment that promotes biochemical reactions. LAT clusters excluded CD45 and retained 

ZAP70 to create an environment that perpetuated the phosphorylated state of LAT. Clustering of 

LAT promoted downstream biochemical reactions in the signaling pathway, specifically the 

ability of Nck to promote N-WASp-Arp2/3 mediated actin polymerization (fig. S11), as 

suggested by Nck density-dependent actin polymerization in cells (27). Multivalent interactions 

have been proposed to drive the assembly of many other cellular structures, including PML 

bodies, stress granules, and focal adhesions (17, 26), thus the mechanisms of spatial organization 

of biochemical reactions revealed here may apply to other cellular processes as well. 
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Fig. 1. Multivalent interactions drive LAT cluster formation. 

(A) Schematic of the proteins and interactions in the clustering assay. (B) Total internal 

reflection fluorescence microscopy (TIRF) imaging of LAT clustering and declustering. Clusters 

formed after adding Grb2 (0.5 µM) and Sos1 (0.25 µM, the proline-rich motifs) to membrane-

bound pLAT-Alexa488 (1000 molecules/µm2) at 0 min and dissolved after adding the protein 

tyrosine phosphatase PTP1B (2 µM) at 9 min. Scale bar: 2 µm. See movie S2. (C) Fluorescence 

recovery after photobleaching (FRAP) of clustered pLAT on planar lipid bilayers; time 0 

indicates the time of the photobleaching pulse. Bottom plot shows the time course of the 

recovery of pLAT-Alexa488 (300 molecules/µm2) formed by 1 µM Grb2 and 2 µM Sos1. Shown 

are the mean ± s.d. (N=7 pLAT clusters). Scale bar, 2 µm. (D) TIRF imaging of pLAT-Alexa488 

(300 molecules/µm2) with Sos1 (0.5 µM) alone or additionally with wild-type Grb2 (0.5 µM) or 

Grb2∆SH3 (1 µM) (note- concentrations were set to maintain identical total SH3 concentrations 

in the experiments containing Grb2 and Grb2∆SH3). Scale bar: 2 µm. (E) Valency-dependent 

clustering of pLAT. LEFT: pLAT wild-type with three Grb2 phosphorylation sites (YYY) or 

mutants that contain 6 (2xYYY), 2 (FYY, YFY, YYF), 1 (FFY), or 0 (FFF) phospho-tyrosines 

were incubated with increasing concentrations of Grb2 and Sos1. 1x indicates 125 nM Grb2 and 

62 nM Sos1. pLAT valency mutants were plated at a density around 300 molecules/µm2. 

Clusters were imaged by TIRF microscopy. Scale bar: 5 µm. RIGHT: Quantification of 

clustering of pLAT valency mutants. Clustering degree was quantified by fractional intensity. 

Phase diagrams of pLAT mutants using a larger range of Grb2 and Sos1 concentrations are 

shown in fig. S5. Values shown are the mean ± s.d. (N=3 independent experiments). 

 

Fig. 2. LAT clustering promotes MAPK(ERK) signaling in T cells. 
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(A) Fluorescence recovery after photobleaching (FRAP) of LAT-mCitrine clusters on plasma 

membranes of Jurkat T cells activated by anti-CD3 antibody (OKT3 at 5 µg/mL) attached to the 

coverslip; time 0 indicates the time of the photobleaching pulse. Scale bar, 5 µm or 1 µm on the 

enlarged panel. Right plot shows the time course of the recovery (mean ± s.d.) of 15 cells. (B) 

TIRF microscopy revealed cluster formation of LAT variants in activated T cells. A LAT-

deficient line (Jcam2.5) stably expressing LAT variants containing 6 (2x YYY), 3 (YYY), 2 

(FYY), 1 (FFY), or 0 (FFF) tyrosines for Grb2 binding, was activated by plate-presented OKT3 

at 5 µg/mL. See Methods for clustering quantification. Scale Bar: 5 µm. Shown are mean ± 

s.e.m. (N=16-20 cells). (C) MAPK(ERK) activation in Jurkat T cells expressing LAT valency 

mutants. Cells were activated by anti-CD3 antibody OKT3 at 5 µg/mL, fixed at 10 min, and 

stained with an antibody to pERK (red) and a nucleus dye Hoechst (blue). Scale bar, 20 µm. 

Right plot shows the percentage of pERK positive cells. 200-300 cells were scored for each data 

point. Shown are mean ± s.e.m. (N=3 independent experiments).  

 

Fig. 3. Reconstitution of TCR phosphorylation to LAT clustering. 

(A) Schematic of components in a reaction designed to reconstitute signaling from TCR/CD3ζ 

phosphorylation to LAT clustering. The cytoplasmic domains of CD45, Lck, CD3ζ, and LAT 

were polyhistidine-tagged for membrane attachment and incubated with other components in 

solution. ATP was added to trigger the phosphorylation cascade. Input: CD45-SNAP-TMR, Lck, 

CD3ζ, and LAT-Alexa647 at 30, 250, 500, and 1000 molecules/µm2, respectively, 10 nM 

ZAP70-505-Star, 250 nM Grb2, 125 nM Sos1, 250 nM Gads, 125 nM SLP-76, and 0.5 mM 

ATP-Mg. (B) TIRF microscopy revealed time courses of ZAP70 membrane recruitment, CD45 

exclusion, and LAT clustering in the reconstituted pathway. A larger field view of LAT clusters 
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is shown in fig. S6B. Scale bar: 2 µm. (C) TOP: pLAT-Alexa488 (300 molecules/µm2) bound to 

planar lipid bilayers was incubated with Grb2 (1 µM) in the presence (top) or absence (bottom) 

of Sos1 (1 µM). Then the cytoplasmic domain of CD45-TMR (4 nM; with an N-terminal His10 

tag) was added and its localization was visualized by TIRF microscopy. Scale bar: 2 µm. 

BOTTOM: Quantification of fluorescence intensity of pLAT and CD45 along the line scan 

indicated by a white line in the top merged image. (D) Western blot analysis of pLAT 

dephosphorylation by CD45. pLAT bound to membrane (300 molecules/µm2) was incubated 

with 1 µM Grb2 (unclustered pLAT) or 1 µM Grb2 plus 1 µM Sos1 (clustered pLAT). His10-

CD45 was then added and the reactions were stopped after 5 min by adding SDS-PAGE loading 

buffer containing 2 mM vanadate. Quantification of pLAT phosphorylation normalized to the 

total LAT signal is shown in the bottom plot. 

 

Fig. 4. LAT clustering promotes actin polymerization. 

(A) Schematic of the reconstituted signaling pathway from CD3ζ/TCR phosphorylation to actin 

polymerization. ZAP70-505-Star, LAT-Alexa647, and actin-Rhodamine serve as reporters for 

TCR phosphorylation, LAT clustering, and actin assembly, respectively. Lck, CD3ζ, and LAT 

were membrane attached through a polyhistidine tag and incubated with other components in 

solution. ATP was then added to trigger the signaling cascade. Input: same for Lck, CD3ζ, 

pLAT-Alexa647, and ZAP70-505-Star as described in Fig. 3A. The rest are 250 nM Gads, 125 

nM SLP-76, 500 nM Nck, 250 nM N-WASp, 2.5 nM Arp2/3 complex, 500 nM actin (5% 

Rhodamine labeled), and 0.5 mM ATP-Mg. (B) Time courses of ZAP70 membrane recruitment, 

LAT clustering, and actin polymerization in the reconstituted assay after addition of ATP at time 

0. LAT clustering was quantified as variance of fluorescence intensities on membranes (See 
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Methods). (C) TIRF imaging showing actin assembly on the LAT clusters. Scale bar: 2 µm. (D) 

TIRF imaging of pLAT-Alexa647 and actin-Rhodamine 45 min after adding ATP to the reaction. 

Input: same as in Fig. 4A except with higher concentrations of components of actin and actin 

regulators (500 nM SLP-76, 1000 nM Nck, 500 nM N-WASp, 5 nM Arp2/3 complex, 1000 nM 

actin (5% Rhodamine-labeled)). Scale bar: 2 µm. (E) LEFT: TIRF microscopy images of His10-

Nck-Pacific Blue and actin-Rhodamine on the bilayer. Nck (150 molecules/µm2) was attached to 

the bilayer and N-WASp (5 nM), Arp2/3 complex (0.25 nM), actin (200 nM; 5% Rhodamine 

labeled), and 0.5 mM ATP-Mg were in solution. Increasing concentrations of His-tagged pLAT 

were added as indicated along with Gads and pSLP-76. At 0.1 nM pLAT, Gads, and pSLP-76 

concentrations were 8 nM and 4 nM, respectively. As pLAT concentration was increased, more 

Gads and pSLP-76 were added to maintain a constant ratio of the clustering components. Scale 

bar: 2 µm. RIGHT: Mean actin fluorescence (red) and Nck clustering level (blue) quantified as 

variance of His10-Nck fluorescence intensity, are plotted for increasing concentrations of pLAT. 

Shown are mean ± s.e.m. (N=3 independent experiments). 
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Materials and Methods 

Protein reagents 

Human LAT (aa 48-233) or tyrosine mutants with an N-terminal His8 tag, CD3ζ (aa 52-
164) with an N-terminal His10 tag or additionally a C-terminal SNAP tag, Grb2 (aa 1-
217), Grb2 (aa 1-154), Sos1 (aa 1117-1319), SLP-76 (aa 101-420), Gads (aa 1-155 and 
261-330) with an internal GB1 tag, Nck1 (aa 1-377) with or without an C-terminal His10 
tag, PTP1B (aa 3-277), and Rat N-WASp (aa 151-501), SNAP or charge mutants with an 
N-terminal His10 tag, GFP or charge mutants with an N-terminal His10 tag, and FKBP 
with an N-terminal His10 tag and a C-terminal SNAP tag were expressed and purified 
from bacteria. Lck (aa 3-509) with an N-terminal His10 tag, ZAP70 (aa 1-619) with an N-
terminal SNAP tag, CD45 (aa 598-1304) with an N-terminal His10 tag and a C-terminal 
SNAP tag were expressed and purified from Sf9 cells. Arp2/3 complex was purified from 
Bovine thymus. Actin (rabbit skeletal muscle) and Rhodamine-labeled actin were 
purchased from Cytoskeleton. Purified products are shown in fig. S1A. Details of 
constructs used in this study are listed in the table S1.  

Protein purification 

LAT purification 

BL21(DE3) cells containing MBP-His8-LAT 48-233-His6 were collected by 
centrifugation and lysed by cell disruption (Emulsiflex-C5, Avestin) in 20 mM imidazole 
(pH 8.0), 150 mM NaCl, 5 mM βME, 0.1% NP-40, 10% glycerol, 1 mM PMSF, 1 μg/ml 
antipain, 1 μg/ml pepstatin, and 1 μg/ml leupeptin. Centrifugation-cleared lysate was 
applied to Ni-NTA agarose (Qiagen), washed with 10 mM imidazole (pH 8.0), 150 mM 
NaCl, 5 mM βME, 0.01% NP-40, and 10% glycerol, and eluted with the same buffer 
containing 500 mM imidazole (pH 8.0). The MBP tag and His6 tag were removed using 
TEV protease treatment for 16 hrs at 4°C. Cleaved protein was applied to a Source 15 Q 
anion exchange column and eluted with a gradient of 200 mM300 mM NaCl in 20 mM 
HEPES (pH 7.0) and 2 mM DTT followed by size exclusion chromatography using a 
Superdex 200 prepgrade column (GE Healthcare) in 25 mM HEPES (pH 7.5), 150 mM 
NaCl, 1 mM MgCl2, and 1 mM DTT.  

Grb2, Grb2ΔSH3, Gads, Sos1, and SNAP purification 

BL21(DE3) cells containing GST-tagged Grb2, Grb2ΔSH3, Gads, or Sos1 were collected 
by centrifugation and lysed by 1 mg/mL lysozyme in PBS with 5% glycerol and 0.5 mM 
EDTA for 1hr at 4°C. The lysate was additionally treated with 0.5 % Triton X-100, 10 
μg/mL DNase, and 1 mM MgCl2 for 1 hr. Centrifuge-cleared lysate was supplemented 1 
mM DTT and applied to Glutathione Sepharose 4B (GE Healthcare) and washed with 50 
mM HEPES (pH 7.0), 150 mM NaCl, 5% glycerol and 1 mM TCEP. GST was cleaved 
from protein by PreScission protease treatment overnight at 4°C. Cleaved protein was 
further purified by size exclusion chromatography using a Superdex 200 prepgrade 
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column (GE Healthcare) in 50 mM HEPES (pH 7.5), 150 mM NaCl, 10% glycerol, and 1 
mM TCEP. 

Cleavable Grb2 purification 

BL21(DE3) cells containing GST-Cleavable Grb2 were collected by centrifugation and 
lysed by sonication in 25 mM Tris-HCl (pH 8.0), 200 mM NaCl, 2 mM EDTA (pH 8.0), 
5 mM βME, 1 mM PMSF, 1 μg/ml antipain, 1 μg/ml pepstatin, and 1 μg/ml leupeptin. 
Centrifuge-cleared lysate was applied to Glutathione Sepharose 4B (GE Healthcare) and 
washed with 25 mM Tris-HCl (pH 8.0), 200 mM NaCl, and 1 mM DTT. GST was 
cleaved from protein by TEV protease treatment for 16 hrs at 4°C. Cleaved protein was 
applied to a Source 15Q anion exchange column and eluted with a gradient of 150 
mM250 mM NaCl in 20 mM imidazole (pH 7.0) and 1 mM DTT followed by size 
exclusion chromatography using a Superdex 200 prepgrade column (GE Healthcare) in 
25 mM HEPES (pH 7.5), 150 mM NaCl, 1 mM MgCl2, and 1 mM βME. 

SLP-76 purification and phosphorylation 

BL21(DE3) cells containing MBP-SLP-76 Acidic and Proline Rich region-His6 were 
collected by centrifugation and lysed by cell disruption (Emulsiflex-C5, Avestin) in 20 
mM imidazole (pH 8.0), 150 mM NaCl, 5 mM βME, 0.01% NP-40, 10% glycerol, 1 mM 
PMSF, 1 μg/ml antipain, 1 μg/ml pepstatin, and 1 μg/ml leupeptin. Centrifuge-cleared 
lysate was applied to Ni-NTA Agarose (Qiagen), washed first with 20 mM imidazole (pH 
8.0), 150 mM NaCl, 5 mM βME, 0.01% NP-40, 10% glycerol, and 1 mM benzamidine, 
then washed with 50 mM imidazole (pH 8.0), 300 mM NaCl, 5 mM βME, 0.01% NP-40, 
10% glycerol, 1 mM benzamidine, and eluted with 500 mM imidazole (pH 8.0), 150 mM 
NaCl, 5 mM βME, 0.01% NP-40, 10% glycerol, and 1 mM benzamidine. MBP cleaved 
by TEV protease treatment for 16 hrs at 4°C or for 2 hrs at room temperature. His6 was 
concurrently cleaved by PreScission protease treatment for 16 hrs at 4°C or for 2 hrs at 
room temperature. Cleaved protein was applied to a Source 15Q anion exchange column 
and eluted with a gradient of 200 mM350 mM NaCl in 20 mM HEPES (pH 7.5) and 2 
mM βME followed by size exclusion chromatography using a Superdex 200 prepgrade 
column (GE Healthcare) in 25 mM HEPES (pH 7.5), 150 mM NaCl, 1 mM MgCl2, and 1 
mM DTT. To phosphorylate SLP-76, Purified SLP-76 was incubated in 50 mM HEPES 
(pH 7.0), 150 mM NaCl, 20 mM MgCl2, 15 mM ATP, 2 mM DTT, and 20 nM Active 
GST-ZAP70 (SignalChem). Phosphorylated SLP-76 was resolved on a MonoQ anion 
exchange column (GE Healthcare) using a shallow %B gradient from 300 mM400 mM 
over 60 column volumes to separate differentially phosphorylated species of SLP-76. 
3pY SLP-76 was confirmed by mass spectrometry analysis.  

Nck purification 

BL21(DE3) cells containing GST-Nck1 were collected by centrifugation and lysed by 
sonication in 25 mM Tris-HCl (pH 8.0), 200 mM NaCl, 2 mM EDTA (pH 8.0), 1 mM 
DTT, 1 mM PMSF, 1 μg/ml antipain, 1 μg/ml pepstatin, and 1 μg/ml leupeptin. 
Centrifuge-cleared lysate was applied to Glutathione Sepharose 4B (GE Healthcare) and 
washed with 25 mM Tris-HCl (pH 8.0), 200 mM NaCl, and 1 mM DTT. GST was 
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cleaved from protein by TEV protease treatment for 16 hrs at 4°C. Cleaved protein was 
applied to a Source 15Q anion exchange column and eluted with a gradient of 0  200 
mM NaCl in 20 mM imidazole (pH 7.0) and 1 mM DTT. Eluted protein was pooled and 
applied to a Source 15S cation exchange column and eluted with a gradient of 0  200 
mM NaCl in 20 mM imidazole (pH 7.0) and 1 mM DTT. Eluted protein was concentrated 
using Amicon Ultra 10k concentrators and further purified by size exclusion 
chromatography using a Superdex 75 prepgrade column (GE Healthcare) in 25 mM 
HEPES (pH 7.5), 150 mM NaCl, and 2 mM βME. 

N-WASp and His-Nck purification 

BL21(DE3) CodonPlus RILcells expressing His6-N-WASp 151-501 or His10-Nck1 were 
collected by centrifugation and lysed using amicrofluidizer in 20 mM HEPES (pH 7.5), 
500 mM NaCl, 10 mM imidazole, 30 mM L-Arg, 10% glycerol, 4 mM benzamidine, and 
2 mM βME. Centrifuge-cleared lysate was applied to Ni-NTA Agarose (Qiagen), washed 
first with 20 mM HEPES (pH 7.5), 1000 mM NaCl, 30 mM L-Arg, 10% glycerol, 2 mM 
βME, then washed with 20 mM HEPES (pH 7.5), 500 mM NaCl, 10 mM imidazole, 30 
mM L-Arg, 10% glycerol, 4 mM benzamidine, 2 mM βME, 50 mM KCl, 10 mM MgCl2, 
and 2 mM ATP, followed by elution with 20 mM HEPES (pH 7.5), 500 mM NaCl, 400 
mM imidazole, 30 mM L-Arg, and 10% glycerol, 1 mM TCEP. The His6 tag on N-WASp 
was cleaved with TEV protease overnight on ice. TEV-cleaved N-WASp was applied to a 
Heparin column in 20 mM HEPES (pH 7.5), 0.5 mM TCEP and purified using a 50  
1500 mM NaCl gradient. His10-Nck1 was further purified by size exclusion 
chromatography using a Superdex 200 prepgrade column (GE Healthcare) in 20 mM 
HEPES (pH 7.5), 500 mM NaCl, 10% glycerol, and 0.5 mM TCEP. 

PTP1B purification 

BL21(DE3) cells containing GST-PTP1B were collected by centrifugation and lysed by 
sonication in 20 mM Tris-HCl (pH 8.0), 200 mM NaCl, 2 mM EDTA (pH 8.0), and 1 
mM DTT. Centrifuge-cleared lysate was applied to Glutathione Sepharose 4B (GE 
Healthcare), washed with 25 mM Tris-HCl (pH 8.0), 200 mM NaCl, and 1 mM DTT. 
GST was cleaved by PreScission protease treatment for 16 hrs at 4°C. Cleaved protein 
was applied to a Source 15Q anion exchange column and eluted with a gradient of 0  
300 mM NaCl in 20 mM imidazole (pH 7.0) and 1 mM DTT followed by size exclusion 
chromatography using a Superdex 200 prepgrade column (GE Healthcare) in 25 mM 
HEPES (pH 7.5), 150 mM NaCl, and 1 mM βME. 

FKBP-SNAP, CD3ζ and Lck purification 

The cytosolic domain of human CD3ζ (residues 52-164) was expressed with an N-
terminal His10 tag in BL21(DE3) E. coli. Full length human Lck (with a G2A mutation to 
prevent myristoylation) with an N-terminal His10-tag was expressed in SF9 cells using the 
Bac-to-Bac baculovirus expression system (Life Technologies). The proteins were 
purified using Ni-NTA Agarose (Qiagen) and size exclusion chromatography essentially 
as described previously (22).  
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CD45 purification 

The cytosolic portion of human CD45 (residues 598-1304) with an N-terminal His10 tag 
and a C-terminal SNAP tag was expressed in SF9 cells using the Bac-to-Bac baculovirus 
expression system (Life Technologies). Cells were harvested by centrifugation and lysed 
by Dounce homogenizer in 50 mM HEPES (pH 7.4), 300 mM NaCl, 30 mM imidazole, 
5% glycerol, 5 μg/mL DNase, 0.5% Triton X-100, 0.5 mM TCEP, 1 mM PMSF, and 
protease inhibitor cocktail. Centrifuge-cleared lysate was applied to Ni sepharose (GE 
healthcare), washed with 50 mM HEPES (pH 7.4), 300 mM NaCl, 5% glycerol, 15 mM 
imidazole, and 1 mM TCEP, and eluted with the same buffer with additional 400 mM 
imidazole. Eluted protein was further purified by size exclusion chromatography using a 
Superdex 200 prepgrade column (GE Healthcare) in 50 mM HEPES (pH 7.5), 150 mM 
NaCl, 10% glycerol, and 1 mM TCEP.  

ZAP70 purification 

Human ZAP70 with an N-terminal SNAP tag was expressed as a GST fusion protein in 
SF9 cells using the Bac-to-Bac baculovirus expression system (Life Technologies), with 
a PreScission recognition sequence (LEVLFQGP) engineered between the GST and 
SNAP tag. The baculovirus infected cells were lysed in an Emulsiflex system (Avestin) 
in 50 mM HEPES (pH 7.5), 150 mM NaCl, supplemented with 5 mM βME,1 mM PMSF, 
1 mM benzamidine, and complete protease inhibitor (Roche), then subjected to 
centrifugation at 30,000 x g for 20 min. The cleared lysate was incubated with 
Glutathione Sepharose 4B (GE Healthcare) for 3 hr at 4 °C before washed with 3 x 50 
mL HEPES buffered saline. In order to remove the GST moiety, the bead slurry was 
treated with PreScission protease. The supernatant fraction containing soluble proteins 
was then subjected to size exclusion chromatography, and the monomeric fractions were 
collected. 

Phosphorylation and isolation of 4pY LAT 

Purified plain LAT was concentrated using Amicon Ultra Centrifugal Filter units 
(Millipore) to >400 µM, mixed with 25 mM HEPES (pH 7.5), 150 mM NaCl, 15 mM 
ATP, 20 mM MgCl2, 2 mM DTT and active GST-ZAP70 (SignalChem), and incubated 
for 24 hrs at 30°C. Phosphorylated LAT was resolved on a MonoQ anion exchange 
column using a shallow NaCl gradient to separate differentially phosphorylated species 
of LAT (fig. S1B). 4pY LAT was confirmed by mass spectrometry. 

Maleimide-conjugated dye labeling of proteins 

Cysteine-containing LAT, pLAT, Grb2, Nck, SLP-76 and Sos1 were exchanged into 
buffer containing no reducing agent (25 mM HEPES (pH 7.0), 150 mM NaCl, 1 mM 
EDTA) using a HiTrap Desalting Column. C5-maleimide Alexa488, TMR, Pacific Blue, 
or C2-maleimide Alexa647 were added in excess and incubated with protein for 16 hrs at 
4°C or 2 hrs at room temperature. Following the incubation, 5 mM 2-mercaptoethanol 
was added to the mixture to quench the labeling reaction. Excess dye was removed from 
labeled protein by size exclusion chromatography. 
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Protein concentrations for in vitro reconstitution 

Overall, we sought to use physiologically relevant concentrations of proteins in the in 
vitro reconstitution reactions. The membrane density of LAT in T cells was estimated to 
be 100-1200 molecules/µm2 (19,28). We used 300 molecules/µm2 in most of the assays 
and 1000 molecules/µm2 in some assays. To determine the membrane density of pLAT 
on SLBs, 1 pM of pLAT-Cy3B was mixed with nanomolar concentrations of pLAT-
Alexa488 and attached to membranes. The numbers of pLAT-Cy3B molecules in a given 
area were counted by single molecule imaging and used, along with the [pLAT-
Cy3B]/[pLAT-Alexa488] ratio to calculate overall density of pLAT on SLBs. On 
average, 3 nM of added pLAT or other membrane-bound proteins gives a density around 
300 molecules/µm2 in our experimental settings. The membrane densities of TCR, Lck, 
and CD45 were estimated to be 110-360 molecules/µm2, 140-430 molecules/µm2, and 
360-1800 molecules/µm2, respectively (22). The total concentrations of Grb2, Sos1, Gads 
were estimated as 1.5-6.9 µM, 0.4-0.7 µM, and 1.5-5.7 µM, respectively (19,28). The 
protein concentrations used in this study are mostly within these ranges. 

Small Unilamellar Vesicle Preparation 

Synthetic 1,2-dioleyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-
[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt, DGS-NTA-Ni) 
and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-
5000] (ammonium salt) (PEG5000 PE) were purchased from Avanti Polar Lipids. 
Phospholipids (98% POPC, 2% DGS-NTA-Ni and 0.1% PEG 5000 PE) were dried under 
a stream of Argon, desiccated over 3 hrs and resuspended in PBS. To promote the 
formation of small unilamellar vesicles (SUVs), the lipid solution was repeatedly frozen 
in liquid N2 and thawed using a 37°C water bath until the solution cleared. Cleared SUV-
containing solution was centrifuged at 33,500g for 45 min at 4°C. Supernatant containing 
SUVs was collected and stored at 4°C covered with Argon.  

Reconstitution assay on supported lipid bilayers 

Supported lipid bilayers (SLBs) were formed in 96-well glass-bottomed plates (Matrical). 
Glass was washed with Hellmanex III (Hëlma Analytics) overnight, thoroughly rinsed 
with MilliQ H2O, washed with 5M NaOH for 1 hr at 50°C for three times, and 
thoroughly rinsed with MilliQ H2O followed by equilibration with 50 mM HEPES (pH 
7.5), 150 mM NaCl, and 1 mM TCEP. SUVs were added to cleaned wells covered by 50 
mM HEPES (pH 7.5), 150 mM NaCl, and 1 mM TCEP. Wells were incubated for 1 hr at 
42°C to allow SUVs to collapse on glass and fuse to form SLB. SLBs were washed with 
50 mM HEPES (pH 7.5), 150 mM NaCl, and 1 mM TCEP to remove excess SUVs. SLBs 
were blocked with clustering buffer (50 mM HEPES (pH 7.5), 150 mM NaCl, 1 mM 
TCEP, and 1 mg/mL BSA) for 30 min at room temperature. Indicated concentrations of 
His-tagged proteins were premixed and incubated with SLBs for about 3 hrs. SLBs were 
washed with clustering buffer to remove unbound His-tagged proteins. Indicated amounts 
of soluble proteins were added to His-tagged protein-bound SLBs and imaged using 
TIRF microscopy. Microscopy experiments were performed in the presence of a 
glucose/glucose oxidase/catalase O2-scavenging system. For signaling reconstitution 



 
 

7 
 

assays, the final reaction buffer is 35 mM HEPES (pH 7.2), 60 mM NaCl, 30 mM KCl, 1 
mM MgCl2, 0.4 mM TCEP, and 0.4 mg/mL BSA. 

Western blot 

Reaction mixture of the dephosphorylation assay was applied to SDS-PAGE, transferred 
onto a nitrocellulose membrane, and incubated with a phospho-specific antibody that 
recognizes LAT pY191 (CST #3584, at 1:500 dilution) or a LAT plain antibody (EMD 
Millipore #05-770,1:500 dilution).  

Cell culture and transfection 

The Jurkat T cells were grown in RPMI-1640 supplemented with 10% FBS, 2 mM L-
glutamine, 100 U/mL penicillin, and 100 µg/mL Streptomycin. Lentiviral transduction 
was used to make cells stably expressing LAT variants. LAT variants were inserted into 
the pHR-mCitrine-tWPRE backbone vector and introduced into a LAT-deficient Jurkat 
line (JCam2.5). Cells expressing similar levels of LAT variants were selected by FACS.  

Activation of Jurkat T cells 

Jurkat T cells were rested in RPMI-1640 media supplemented with 20 mM HEPES (pH 
7.4) for 30 min before being dropped onto coverslips coated with anti-CD3ε antibody 
OKT3 (eBioscience #16-0037-85, 1:200 dilution). After 10 min, cells were fixed by 3.2% 
paraformaldehyde, permeabilized with methanol, and sequentially stained with an anti-
pERK antibody (CST #9101, 1:500 dilution), a goat anti-rabbit IgG-Alexa647 (Invitrogen 
#A21244, 1:1000), and a nucleic acid dye Hoechst (1:10,000). The samples were imaged 
by fluorescence microscopy. For imaging LAT cluster formation, Jurkat T cells 
resuspended in RPMI-1640 media without phenol red supplemented with 20 mM HEPES 
(pH7.4) were dropped onto OKT3 (5 µg/mL)-coated coverslip. TIRF microscopy was 
used to monitor cluster formation. It was critical to set a low-angle TIRF so that only the 
LAT fluorescent signal on plasma membranes, but not from endocytic vesicles, was 
captured. For imaging LAT cluster mobility, mobilized OKT3 was presented to T cells. 
In brief, a supported lipid bilayer containing 1% PEG2000-Biotin and 1% DOGS-NTA 
was incubated with 1 µg/mL streptavidin, 1 µg/mL His-ICAM-1, and then 5 µg/mL 
Biotin-OKT3. Wild-type Jurkat T cells (E6.1) expressing LAT-mCherry were dropped 
onto the bilayers. Cluster mobility was imaged by TIRF microscopy.   

Microscopy 

TIRF images were captured using a Nikon Eclipse Ti microscope base equipped with an 
AndoriXon Ultra 897 EM-CCD camera with a 100 X 1.49 NA objective, a TIRF/iLAS2 
TIRF/FRAP module (Biovision) mounted on a Leica DMI6000 microscope base 
equipped with a Hamamatsu ImagEMX2 EM-CCD camera with a 100 X 1.49 NA 
objective, or a Nikon Eclipse Ti microscope base equipped with a Hamamatsu ORCA 
Flash 4.0 camera with a 100 X 1.49 NA objective. Spinning disk images were capture 
using a Nikon Eclispe Ti microscope base equipped with an Andor EM-CCD CSU-X1 
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camera with a 100 X 1.49 N/A objective. FRAP was performed using a Nikon Eclipse Ti 
microscope base equipped with Rapp UGA-40 Phototargeter.  

Data analysis and display 

Images were analyzed using ImageJ (FIJI). The same brightness and contrast were 
applied to images within the same panels. Camera background was subtracted before 
calculating mean fluorescence intensities. Variance, as a means for quantifying clustering 
level (18), was calculated as square of standard deviation of pixel intensities of the entire 
image. The fractional intensity calculations were used to determine phase separation. The 
triangle thresholding algorithm in FIJI was used to threshold images. Anything with a 
fractional intensity of greater than 2X the control was determined to be phase 
separated. Data from image analysis within FIJI was graphed using Microsoft Excel. 
 

Supplementary Text 

LAT cluster size 

Previous reports suggested that LAT and TCR form nanometer-sized clusters prior to 
TCR activation (29-31). The presence of these nanoclusters (though not a part of our in 
vitro reconstitution) could nucleate the formation of larger microclusters upon T cell 
activation in living cells and accelerate the rate of clustering and downstream signaling.  

The size of LAT microclusters in vivo tend to be smaller (e.g. diffraction limit to 0.5 µm 
(7,30)) than those that form in vitro at the physiological reported concentrations of 
LAT/Grb2/Sos1 concentrations measured in T cells (19, 28) (although note that size 
decreases at lower concentrations of these components in vitro (fig. S1C)). Several 
reasons (not mutually exclusive) could account for this difference. First, a subset of these 
molecules (e.g. Grb2) might be bound to other components in cells, thereby reducing 
their effective concentrations and cluster size as we have seen also in vitro. Second, more 
proteins in cells might bind to LAT clusters than are included in our simplified protein 
reactions and affect cluster size. Third, the acto-myosin network at the plasma membrane 
may actively regulate microcluster size by creating filament boundaries that prevent 
microcluster fusion into larger clusters. Fourth, additional mechanisms in T cells could 
regulate microcluster size, such as lipid microdomains on the plasma membrane.  

In vitro, the size of LAT clusters formed in a minimal condition with Grb2 and Sos1 is 
smaller than that in the complete reconstituted signaling pathway (table S2), suggesting 
that the cluster size is affected by the composition and concentration of components. 

Regarding the time dependence of pLAT clusters in vitro, one might expect that pLAT 
puncta should eventually coalesce into a single domain, due to a combination of fusion 
and Ostwald ripening (the flux of molecules from small puncta to large puncta in order to 
minimize line tension in the system). However, in practice this does not occur, even after 
~12 hours of incubation. This is likely due in part to the fact that as LAT clusters grow 
larger, their mobility decreases, and thus they stop fusing with one another. This lack of 
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mobility may be due to small defects on the planar bilayers that form during long 
reactions and anchor pLAT molecules to the glass. These defects may also decrease 
molecular diffusion, which will also slow Ostwald ripening.   

Mechanisms of protein exclusion from the LAT clusters 

We showed that CD45 was excluded from LAT clusters in vitro (Fig. 3B,C). The 
exclusion was observed using other membrane-bound proteins and the exclusion level 
correlated with the estimated isoelectric point of the proteins (fig. S7A). To test whether 
charge is a key parameter governing partitioning, we added negatively- or positively-
charged residues to membrane-bound SNAP protein and found that addition of negative 
charge favored exclusion from LAT clusters while positive charge resulted in enrichment 
(fig. S7B). The same trend was confirmed using membrane-bound GFP variants with 
different charges (fig. S7C). LAT is highly charged (pI 4.6, charge -25 at physiological 
conditions). Based on the data above, we propose that charge affects the partitioning of 
membrane-bound molecules to LAT clusters.    

The extracellular domain of CD45 was shown to mediate CD45 exclusion from the TCR 
microclusters in a size-dependent manner (32). Here we show that the intracellular 
domain of CD45 could also mediate exclusion from LAT clusters, likely in a charge-
dependent manner. This could facilitate the exclusion exerted by the extracellular domain 
to further enhance the stability of T cell microclusters and phosphorylation of molecules 
inside the clusters.  
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Fig. S1. pLAT forms clusters with Grb2 and Sos1 on supported lipid bilayers. (A) 
Purified proteins used in this study were displayed by SDS-PAGE (stained with 
Coomassie blue). (B) Separation of LAT phosphorylation products by ion exchange 
chromatography. Red line shows increase in percentage of B buffer. Blue line shows 
protein peaks detected at A280 following elution from the Mono Q anion exchange 
column. The 4pY peak was confirmed by mass spectrometry. (C) pLAT formed clusters 
with Grb2 and Sos1 at the indicated concentrations (unit µM). Scale bar: 2 µm. (D) 
Unphosphorylated LAT did not form clusters with Grb2 and Sos1. Scale bar: 2 µm. (E) 
Colocalization of pLAT-Alexa488, Grb2-Alexa568, and Sos1-Alexa647 in the cluster. 
Scale bar: 2 µm. (F) Grb2 and Sos1 are both required to form LAT clusters. pLAT-
Alexa488 was incubated with either Grb2 or Sos1 or both and visualized by TIRF 
microscopy. Scale bar: 2 µm.  
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Fig. S2 Comparison of Grb2/Sos1 and Gads/SLP-76 in promoting LAT cluster 
formation. (A) Domain schematic and interactions of different SH2-SH3 adaptors. (B) 
TIRF imaging revealed kinetics of pLAT clustering with Grb2/Sos1 or Gads/SLP-76. 
pLAT-Alexa-488 (300 molecules/µm2) was incubated with 0.5 µM Grb2 and 0.25 µM 
Sos1, or 0.5 µM Gads and 0.25 µM SLP-76 at time 0. Scale bar: 5 µm. (C) TIRF 
microscopy revealed that Nck promotes pLAT/Gads/pSLP76 clustering. Gads and pSLP-
76, with or without 0.5 µM Nck were added at time 0. Scale bar: 5 µm. 
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Fig. S3. Dynamics of LAT clusters. (A) Single molecule trajectories of pLAT or LAT 
(labeled with TMR) in the context of pLAT clusters (labeled with Alexa488). White 
arrows indicate trapping of a single pLAT-TMR molecule in a cluster. pLAT-Alexa488 
(300 molecules/µm2) was incubated with Grb2 (0.5 µM) and Sos1 (0.25 µM). pLAT-
TMR or LAT-TMR was included at 0.07 molecules/µm2. Scale bar, 2 µm. (B) 
Quantification of mobility of pLAT and LAT molecules shown in the left panel. The 
periods of time in which pLAT colocalized within the cluster (“in”) or was present 
outside the cluster (“out”) are indicated. (C) Mean square displacement analysis of single 
molecules of LAT, pLAT in cluster, and pLAT out of cluster. Shown are mean + s.e.m. 
(N=15 tracks). (D) Fusion of LAT clusters on the plasma membrane of Jurkat T cells. 
Jurkat T cells expressing LAT-mCherry were plated on supported lipid bilayer 
functionalized with anti-CD3 antibody OKT3 and adhesive molecule ICAM-1. Mobility 
of microclusters was visualized by TIRF microscopy. Scale bar, 5 µm or 1 µm on the 
enlarged panel. 
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Fig. S4. Multivalent interaction-mediated LAT cluster formation. (A) TOP: 
Schematics of Grb2-Cle that contains a PreScission cleavage site between the SH2 and 
C-terminal SH3 domain. MIDDLE: TIRF imaging of pLAT-Alexa488 (300 
molecules/um2) incubated with Grb2-Cle (0.5 µM) and Sos1 (0.25 µM). Clusters were 
disassembled when treated with PreScission protease (50 nM). Scale bar: 2 µm. 
BOTTOM: Cleavage of Grb2-Cle over the course of 30 min by PreScission protease. 
Grb2 (0.5 µM), Sos1 (0.25 µM), and PreScission (50 nM) were mixed and incubated for 
0, 5, 10, 15, 20, or 30 min at room temperature. Samples were applied to SDS-PAGE and 
stained by Coomassie blue. (B) An increasing density of pLAT-Alexa488 on the 
membrane was incubated with Grb2-Alexa568 (125 nM) and Sos1-Alexa647 (62 nM). 
Images show pLAT-Alexa488 clustering. Scale bar: 2 µm. Plot shows total fluorescence 
intensities of pLAT, Grb2, or Sos1 in clusters as a function of pLAT densities. A 
multivalent interaction model predicts this biphasic concentration dependence of LAT 
clustering (19). Briefly, phase separation occurs due to the large size of oligomers formed 
by multivalent interactions. At low to intermediate concentrations, each pLAT can bind 
multiple Grb2 molecules, which will facilitate multivalent crosslinking (see schematic in 
Fig. 1A). However, at high concentrations, each pLAT can at most bind one Grb2, which 
will attenuate crosslinking and lead to a decrease in clustering level. 
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Fig. S5. Phase diagrams of pLAT and single LAT Y to F mutants. pLAT and pLAT Y 
to F mutants were attached to the bilayer at ~300 molecules / µm2. Increased 
concentrations (unit nM) of Grb2 and Sos1 resulted in phase separation. The critical 
concentration of pLAT YYY (upper left) with Grb2 and Sos1 was lower than the critical 
concentration of each mutant (upper right, lower left, lower right). Blue dots indicate no 
phase separation, red dots indicate phase separation. See Methods for quantification.
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Fig. S6. TCR/CD3ζ-induced LAT clustering. (A) Time courses of ZAP70 membrane 
recruitment and LAT clustering in the presence or absence of CD45. LAT clustering was 
quantified as variance of fluorescence intensities measured by TIRF microscopy (see 
Methods). (B) Images of LAT clustering induced by TCR phosphorylation in the 
presence or absence of CD45. Scale bar: 2 µm. Experimental conditions were described 
in Fig. 3A. 



 
 

16 
 

 

 

Fig. S7. LAT clusters exclude negatively-charged proteins but enrich positively 
charged proteins. (A) pLAT-Alexa488 (300 molecules/µm2) bound to planar lipid 
bilayers was incubated with 1 µM Grb2 and 1 µM Sos1. Then 4 nM of  His-tagged 
unphosphorylated LAT, Protein G (Fc binding domain), SNAP, unphosphorylated CD3ζ-
SNAP, or FKBP-SNAP was added and imaged by TIRF microscopy. Scale bar: 2 µm. 
RIGHT: Quantification of exclusion level versus theoretical isoelectric point of indicated 
proteins. Each dot represents a mean of 17 clusters of similar sizes (0.8-1.1 µm in 
diameter). (B) Wild-type SNAP, SNAP fused with 9 glutamates (SNAP-E), or 9 
arginines (SNAP-R) was incubated with pLAT clusters. The exclusion or enrichment is 
quantified by the ratio of fluorescent intensity in clusters to outside clusters. Shown are 
mean + s.d. (N=17 clusters). (C) Wild-type GFP (charge of -7), GFP variant displaying 7 
or 15 positive charge was incubated with pLAT clusters. The exclusion or enrichment 
was quantified by the ratio of fluorescent intensity in clusters to outside clusters. Shown 
are mean + s.d. (N=3 independent experiments).
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Fig. S8. Time courses of reconstituted TCR-LAT-actin signaling. TIRF microscopy 
revealed sequential membrane recruitment of ZAP70, LAT clustering, and actin 
polymerization in the reconstituted assay. The same experimental condition used in Fig. 
4A was used here. Scale bar: 2 µm. 
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Fig. S9. Actin filaments change LAT cluster shape. (A) Actin regulators Nck, NWASp, 
and Arp2/3 were colocalized with LAT in clusters. The clusters displayed rounded shape 
in the absence of actin. (B) Phalloidin labeled actin structures assembled on LAT clusters. 
(C) Latrunculin was added to an assembled F-actin network with LAT clusters. F-actin 
was depolymerized which caused a morphological change of LAT clusters from rod-like 
to dot-like shape. Scale bar: 5 µm. 
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Fig. S10. Membrane-bound Nck promotes actin polymerization in a density-
dependent manner. (A) TIRF microscopy images of His10-Nck-Pacific Blue and actin-
Rhodamine on the bilayer. Nck (0 - 1500 molecules/µm2) was attached to the bilayer, and 
N-WASp (5 nM), Arp2/3 complex (0.25 nM), and actin (200 nM; 5% Rhodamine 
labeled) were in solution. 0.5 mM ATP-Mg was added to induce actin polymerization; 
images were recorded after 30 min. Scale bar: 2 µm. (B) Quantification of the actin 
fluorescence signal on the bilayer. Shown are mean + s.e.m. (N=3 independent 
experiments). 
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Fig. S11. A model for promoting actin polymerization by LAT clustering. When 
LAT is unclustered, actin regulators (Nck, N-WASp, and Arp2/3) are mostly in solution. 
Upon TCR triggering, LAT is phosphorylated and clustered. Clustered LAT recruit actin 
regulators to membranes, increases the local density as well as the membrane dwell time 
of these regulators, which promotes actin nucleation from the clusters. 
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Table S1. Sequences of constructs used in the study. 

Construct Sequence Notes 
 

CD3ζ MGSSHHHHHHHHHHSSGLVPRGSHMA
SMTGGQQMGRGSKKCKGSRVKFSRSA
DAPAYQQGQNQLYNELNLGRREEYDV
LDKRRGRDPEMGGKPQRRKNPQEGLY
NELQKDKMAEAYSEIGMKGERRRGKG
HDGLYQGLSTATKDTYDALHMQALPP
R 

Human cytoplasmic fragment, 
residues 52 - 164 , fused with 
an N-terminal His10  tag 

CD3ζ-
SNAP 

MGSSHHHHHHHHHHGGGSGGGSGGG
SRVKFSRSADAPAYQQGQNQLYNELN
LGRREEYDVLDKRRGRDPEMGGKPQR
RKNPQEGLYNELQKDKMAEAYSEIGM
KGERRRGKGHDGLYQGLSTATKDTYD
ALHMQALPPRGGSGGSDKDCEMKRTT
LDSPLGKLELSGCEQGLHRIIFLGKGTS
AADAVEVPAPAAVLGGPEPLMQATAW
LNAYFHQPEAIEEFPVPALHHPVFQQES
FTRQVLWKLLKVVKFGEVISYSHLAAL
AGNPAATAAVKTALSGNPVPILIPCHR
VVQGDLDVGGYEGGLAVKEWLLAHE
GHRLGKPGLGGDSLEFIASKLA 

Human cytoplasmic fragment, 
residues 52 - 164 , fused with 
an N-terminal His10  tag and C-
terminal SNAP tag 

CD45 MSYYHHHHHHHHHHDYDIPTTENLYF
QGAMGSGIQRPTSTSSTRKIYDLHKKRS
CNLDEQQELVERDDEKQLMNVEPIHA
DILLETYKRKIADEGRLFLAEFQSIPRVF
SKFPIKEARKPFNQNKNRYVDILPYDY
NRVELSEINGDAGSNYINASYIDGFKEP
RKYIAAQGPRDETVDDFWRMIWEQKA
TVIVMVTRCEGNRNKCAEYWPSMEEG
TRAFGDVVVKINQHKRCPDYIIQKLNIV
NKKEKATGREVTHIQFTSWPDHGVPED
PHLLLKLRRRVNAFSNFFSGPIVVHCSA
GVGRTGTYIGIDAMLEGLEAENKVDV
YGYVVKLRRQRCLMVQVEAQYILIHQ
ALVEYNQFGETEVNLSELHPYLHNMK
KRDPPSEPSPLEAEFQRLPSYRSWRTQH
IGNQEENKSKNRNSNVIPYDYNRVPLK
HELEMSKESEHDSDESSDDDSDSEEPS
KYINASFIMSYWKPEVMIAAQGPLKETI
GDFWQMIFQRKVKVIVMLTELKHGDQ
EICAQYWGEGKQTYGDIEVDLKDTDK
SSTYTLRVFELRHSKRKDSRTVYQYQY
TNWSVEQLPAEPKELISMIQVVKQKLP

Human cytoplasmic fragment, 
residues 598 - 1304, fused with 
an N-terminal His10 and a C-
terminal SNAP tag 
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QKNSSEGNKHHKSTPLLIHCRDGSQQT
GIFCALLNLLESAETEEVVDIFQVVKAL
RKARPGMVSTEQYQFLYDVIASTYPAQ
NGQVKKNNHQEDKIEFDNEVDKVKQD
ANCVNPLGAPEKLPEAKEQAEGSEPTS
GTEGPEHSVNGPASPALNQGSGSMDK
DCEMKRTTLDSPLGKLELSGCEQGLHR
IIFLGKGTSAADAVEVPAPAAVLGGPEP
LMQATAWLNAYFHQPEAIEEFPVPALH
HPVFQQESFTRQVLWKLLKVVKFGEVI
SYSHLAALAGNPAATAAVKTALSGNP
VPILIPCHRVVQGDLDVGGYEGGLAVK
EWLLAHEGHRLGKPGLG 

FKBP-
SNAP 

MGSSHHHHHHHHHHSSGLVPRGSHMA
SMTGGQQMGRGSGIQRPTSTSSTRGVQ
VETISPGDGRTFPKRGQTCVVHYTGML
EDGKKFDSSRDRNKPFKFMLGKQEVIR
GWEEGVAQMSVGQRAKLTISPDYAYG
ATGHPGIIPPHATLVFDVELLKLEGSGS
GSGGGGSSTRMDKDCEMKRTTLDSPL
GKLELSGCEQGLHEIKLLGKGTSAADA
VEVPAPAAVLGGPEPLMQATAWLNAY
FHQPEAIEEFPVPALHHPVFQQESFTRQ
VLWKLLKVVKFGEVISYQQLAALAGN
PAATAAVKTALSGNPVPILIPCHRVVSS
SGAVGGYEGGLAVKEWLLAHEGHRLG
KPGLGGSGSGSGGGGSSTS 

FKBP fused with an N-
terminal His10 tag 

Gads GPLGSEAVAKFDFTASGEDELSFHTGD
VLKILSNQEEWFKAELGSQEGYVPKNF
IDIQFKWFHEGLSRHQAENLLMGKEVG
FFIIRASQSSPGDFSISVRHEDDVQHFKV
MRDNKGNYFLWTEKFPSLNKLVDYYR
TNSISRQKQIFLRDRTREDQGHEYKLIL
NGKTLKGETTTEAVDAATAEKVFKQY
ANDNGVDGEWTYDDATKTFTVTEHTD
PVQLQAAGRVRWARALYDFEALEDDE
LGFHSGEVVEVLDSSNPSWWTGRLHN
KLGLFPANYVAPMTRC 

Human, residues 1-155 and 
261-330 fused with a GB1 
domain in between. GB1 
domain was included to 
increase the protein solubility. 
An additional Cys was added 
to the C-terminal for labeling. 

GFP (-7, 
WT) 

MGHHHHHHHHHHGENLYFQGSMVSK
GEELFTGVVPILVELDGDVNGHKFSVS
GEGEGDATYGKLTLKFICTTGKLPVPW
PTLVTTLTYGVQCFSRYPDHMKQHDFF
KSAMPEGYVQERTIFFKDDGNYKTRAE
VKFEGDTLVNRIELKGIDFKEDGNILGH
KLEYNYNSHNVYIMADKQKNGIKVNF
KIRHNIEDGSVQLADHYQQNTPIGDGP

GFP fused with an N-terminal 
His10 tag 
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VLLPDNHYLSTQSKLSKDPNEKRDHM
VLLEFVTAAGITLGMDELYK 

GFP (+7) MGHHHHHHGGASKGEELFTGVVPILV
ELDGDVNGHKFSVRGEGEGDATNGKL
TLKFICTTGKLPVPWPTLVTTLTYGVQ
CFSRYPDHMKQHDFFKSAMPEGYVQE
RTISFKDDGTYKTRAEVKFEGDTLVNRI
ELKGIDFKEDGNILGHKLEYNFNSHNV
YITADKRKNGIKAKFKIRHNVKDGSVQ
LADHYQQNTPIGRGPVLLPRNHYLSTR
SKLSKDPKEKRDHMVLLEFVTAAGIKH
GRDERYK 

GFP charge variant fused with 
an N-terminal His6 tag 

GFP (+15) MGHHHHHHGGASKGERLFTGVVPILV
ELDGDVNGHKFSVRGEGEGDATRGKL
TLKFICTTGKLPVPWPTLVTTLTYGVQ
CFSRYPKHMKRHDFFKSAMPEGYVQE
RTISFKKDGTYKTRAEVKFEGRTLVNRI
ELKGRDFKEKGNILGHKLEYNFNSHNV
YITADKRKNGIKANFKIRHNVKDGSVQ
LADHYQQNTPIGRGPVLLPRNHYLSTR
SALSKDPKEKRDHMVLLEFVTAAGITH
GMDELYK 

GFP charge variant fused with 
an N-terminal His6 tag 

Grb2 GPLGSMEAIAKYDFKATADDELSFKRG
DILKVLNEECDQNWYKAELNGKDGFIP
KNYIEMKPHPWFFGKIPRAKAEEMLSK
QRHDGAFLIRESESAPGDFSLSVKFGND
VQHFKVLRDGAGKYFLWVVKFNSLNE
LVDYHRSTSVSRNQQIFLRDIEQVPQQP
TYVQALFDFDPQEDGELGFRRGDFIHV
MDNSDPNWWKGACHGQTGMFPRNYV
TPVNRNV 

Human, residues 1 - 217. 
 

Grb2ΔSH3 GPLGSMEAIAKYDFKATADDELSFKRG
DILKVLNEECDQNWYKAELNGKDGFIP
KNYIEMKPHPWFFGKIPRAKAEEMLSK
QRHDGAFLIRESESAPGDFSLSVKFGND
VQHFKVLRDGAGKYFLWVVKFNSLNE
LVDYHRSTSVSRNQQIFLRDIEQV 

Human, residues 1 - 154 

Grb2-
PreScission 
Cleavable 

MEAIAKYDFKATADDELSFKRGDILKV
LNEECDQNWYKAELNGKDGFIPKNYIE
MKPHPWFFGKIPRAKAEEMLSKQRHD
GAFLIRESESAPGDFSLSVKFGNDVQHF
KVLRDGAGKYFLWVVKFNSLNELVDY
HRSTSVSRNQQIFLRDIEQVPQQGGSLE
VLFQGGSPTYVQALFDFDPQEDGELGF
RRGDFIHVMDNSDPNWWKGACHGQT
GMFPRNYVTPVNRNV 

Human, residues 1 - 217. 
Inserted PreScission protease 
site between SH2 and C-
terminal SH3 domains 
(Underlined) 
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LAT HHHHHHHHGIQFKRPHTVAPWPPAFPP
VTSFPPLSQPDLLPIPRSPQPLGGSHRTP
SSRRDSDGANSVASFENEEPACEDADE
DEDDFHNPGYLVVLPDSTPATSTAAPS
APALSTPGIRDSAFSMESIDDYVNVPES
GESAEASLDGSREYVNVSQELHPGAAK
TEPAALSSQEAEEVEEEGAPDYENLQE
LN 

Human, residues 48-233 (short 
isoform) with His8 N-terminal 
fusion. This construct only 
contains the four C-terminal 
Tyr residues (Y132, Y171, 
Y191, and Y226) that are 
sufficient for TCR signaling. 
The rest four N-terminal Tyr 
residues were mutated to Phe. 
Y171, Y191, and Y226 (in red) 
are the three tyrosines that are 
recognized by Grb2 when 
phosphorylated.   

Lck MSYYHHHHHHHHHHDYDIPTTENLYF
QGAMGSGIQRPTSTSSTRACGCSSHPE
DDWMENIDVCENCHYPIVPLDGKGTLL
IRNGSEVRDPLVTYEGSNPPASPLQDNL
VIALHSYEPSHDGDLGFEKGEQLRILEQ
SGEWWKAQSLTTGQEGFIPFNFVAKAN
SLEPEPWFFKNLSRKDAERQLLAPGNT
HGSFLIRESESTAGSFSLSVRDFDQNQG
EVVKHYKIRNLDNGGFYISPRITFPGLH
ELVRHYTNASDGLCTRLSRPCQTQKPQ
KPWWEDEWEVPRETLKLVERLGAGQF
GEVWMGYYNGHTKVAVKSLKQGSMS
PDAFLAEANLMKQLQHQRLVRLYAVV
TQEPIYIITEYMENGSLVDFLKTPSGIKL
TINKLLDMAAQIAEGMAFIEERNYIHR
DLRAANILVSDTLSCKIADFGLARLIED
NEYTAREGAKFPIKWTAPEAINYGTFTI
KSDVWSFGILLTEIVTHGRIPYPGMTNP
EVIQNLERGYRMVRPDNCPEELYQLM
RLCWKERPEDRPTFDYLRSVLEDFFTA
TEGQYQPQP 

Human, residues 3 - 509 with 
His10 N-terminal fusion  

Nck1 GHMAEEVVVVAKFDYVAQQEQELDIK
KNERLWLLDDSKSWWRVRNSMNKTG
FVPSNYVERKNSARKASIVKNLKDTLG
IGKVKRKPSVPDSASPADDSFVDPGER
LYDLNMPAYVKFNYMAEREDELSLIK
GTKVIVMEKCSDGWWRGSYNGQVGW
FPSNYVTEEGDSPLGDHVGSLSEKLAA
VVNNLNTGQVLHVVQALYPFSSSNDEE
LNFEKGDVMDVIEKPENDPEWWKCRK
INGMVGLVPKNYVTVMQNNPLTSGLE
PSPPQCDYIRPSLTGKFAGNPWYYGKV
TRHQAEMALNERGHEGDFLIRDSESSP

Human, residues 1-377 
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NDFSVSLKAQGKNKHFKVQLKETVYCI
GQRKFSTMEELVEHYKKAPIFTSEQGE
KLYLVKHLS 

Nck1 
(His10-
tagged) 

MSMAEEVVVVAKFDYVAQQEQELDIK
KNERLWLLDDSKSWWRVRNSMNKTG
FVPSNYVERKNSARKASIVKNLKDTLG
IGKVKRKPSVPDSASPADDSFVDPGER
LYDLNMPAYVKFNYMAEREDELSLIK
GTKVIVMEKCSDGWWRGSYNGQVGW
FPSNYVTEEGDSPLGDHVGSLSEKLAA
VVNNLNTGQVLHVVQALYPFSSSNDEE
LNFEKGDVMDVIEKPENDPEWWKCRK
INGMVGLVPKNYVTVMQNNPLTSGLE
PSPPQCDYIRPSLTGKFAGNPWYYGKV
TRHQAEMALNERGHEGDFLIRDSESSP
NDFSVSLKAQGKNKHFKVQLKETVYCI
GQRKFSTMEELVEHYKKAPIFTSEQGE
KLYLVKHLSLEGSENLYFQGAHHHHH
HHHHH 

Human, residues 1 - 377 with 
His10 C-terminal fusion 

N-WASp GSEFSPYDVPDYASGRGPNLPMATVDI
KNPEITTNRFYSSQVNNISHTKEKKKGK
AKKKRLTKADIGTPSNFQHIGHVGWDP
NTGFDLNNLDPELKNLFDMCGISEAQL
KDRETSKVIYDFIEKTGGVEAVKNELR
RQAPPPPPPSRGGPPPPPPPPHSSGPPPPP
ARGRGAPPPPPSRAPTAAPPPPPPSRPG
VVVPPPPPNRMYPPPPPALPSSAPSGPPP
PPPLSMAGSTAPPPPPPPPPPPGPPPPPG
LPSDGDHQVPASSGNKAALLDQIREGA
QLKKVEQNSRPVSCSGRDALLDQIRQG
IQLKSVSDGQESTPPTPAPTSGIVGALM
EVMQKRSKAIHSSDEDEDDDDEEDFED
DDEWEDC 

Rat, residues 151 - 501 with an 
N-terminal HA tag and a C-
terminal Cys for labeling 

Protein G MGSSHHHHHHHHHHGGGSGGGSGGG
SGSGGTYKLILNGKTLKGETTTEAVDA
ATAEKVFKQYANDNGVDGEWTYDDA
TKTFTVTEKPEVIDASELTPAVTTYKLV
INGKTLKGETTTEAVDAATAEKVFKQY
ANDNGVDGEWTYDDATKTFTVTEKPE
VIDASELTPAVTTYKLVINGKTLKGETT
TKAVDAETAEKAFKQYANDNGVDGV
WTYDDATKTFTVTEGCTLVSGRTRAPP
PPPLRSGC 

Streptococcus, Fc binding 
region, residues 309 - 497 with 
His10 N-terminal fusion 

PTP1B MEKEFEQIDKSGSWAAIYQDIRHEASD
FPCRVAKLPKNKNRNRYRDVSPFDHSR
IKLHQEDNDYINASLIKMEEAQRSYILT

Human, residues 3-277 
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QGPLPNTCGHFWEMVWEQKSRGVVM
LNRVMEKGSLKCAQYWPQKEEKEMIF
EDTNLKLTLISEDIKSYYTVRQLELENL
TTQETREILHFHYTTWPDFGVPESPASF
LNFLFKVRESGSLSPEHGPVVVHCSAGI
GRSGTFCLADTCLLLMDKRKDPSSVDI
KKVLLEMRKFRMGLIQTADQLRFSYLA
VIEG 

SLP-76 GHMDNGGWSSFEEDDYESPNDDQDGE
DDGDYESPNEEEEAPVEDDADYEPPPS
NDEEALQNSILPAKPFPNSNSMFIDRPP
SGKTPQQPPVPPQRPMAALPPPPAGRN
HSPLPPPQTNHEEPSRSRNHKTAKLPAP
SIDRSTKPPLDRSLAPFDREPFTLGKKPP
FSDKPSIPAGRSLGEHLPKIQKPPLPPTT
ERHERSSPLPGKKPPVPKHGWGPDRRE
NDEDDVHQRPLPQPALLPMSSNTFPSR
STKPSPMNPLSSHMPGAFSESNSSFPQS
ASLPPFFSQGPSNRPPIRAEGRNFPLPLP
NKPRPPSPAEEENCSLNEGSLEVLFQ 

Human, residues 101-420 

SNAP 
(E/R) 

MGSSHHHHHHHHHHGGGSGGGSGGG
SDKDCEMKRTTLDSPLGKLELSGCEQG
LHRIIFLGKGTSAADAVEVPAPAAVLG
GPEPLMQATAWLNAYFHQPEAIEEFPV
PALHHPVFQQESFTRQVLWKLLKVVKF
GEVISYSHLAALAGNPAATAAVKTALS
GNPVPILIPCHRVVQGDLDVGGYEGGL
AVKEWLLAHEGHRLGKPGLGGDSLEFI
ASKLA 

SNAPf with an N-terminal 
His10 tag. SNAP-E contains an 
additional 9E on the C-
terminus whereas SNAP-R 
contains an additional 9R on 
the C-terminus. 

Sos1 GPLGSNDTVFIQVTLPHGPRSASVSSISL
TKGTDEVPVPPPVPPRRRPESAPAESSP
SKIMSKHLDSPPAIPPRQPTSKAYSPRY
SISDRTSISDPPESPLLPPREPVRTPDVFS
SSPLHLQPPPLGKKSDHGNAFFPNSPSP
FTPPPPQTPSPHGTRRHLPSPPLTQEVDL
HSIAGPPVPPRQSTSQHIPKLPPKTYKRE
HTHPSMC 

Human, poly-proline rich 
region, residues 1117-1319 
with a Cys added at the C-
terminus for labeling 

ZAP70 GPTRMDKDCEMKRTTLDSPLGKLELSG
CEQGLHEIKLLGKGTSAADAVEVPAPA
AVLGGPEPLMQATAWLNAYFHQPEAI
EEFPVPALHHPVFQQESFTRQVLWKLL
KVVKFGEVISYQQLAALAGNPAATAA
VKTALSGNPVPILIPCHRVVSSSGAVGG
YEGGLAVKEWLLAHEGHRLGKPGLGG
SGSGSGGGGSSTRMPDPAAHLPFFYGSI
SRAEAEEHLKLAGMADGLFLLRQCLRS

Human, residues 1 - 619 fused 
with an N-terminal SNAP tag 
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LGGYVLSLVHDVRFHHFIERQLNGTYA
IAGGKAHCGPAELCEFYSRDPDGLPCN
LRKPCNRPSGLEPQPGVFDCLRDAMVR
DYVRQTWKLEGEALEQAIISQAPQVEK
LIATTAHERMPWYHSSLTREEAERKLY
SGAQTDGKFLLRPRKEQGTYALSLIYG
KTVYHYLISQDKAGKYCIPEGTKFDTL
WQLVEYLKLKADGLIYCLKEACPNSSA
SNASGAAAPTLPAHPSTLTHPQRRIDTL
NSDGYTPEPARITSPDKPRPMPMDTSV
YESPYSDPEELKDKKLFLKRDNLLIADI
ELGCGNFGSVRQGVYRMRKKQIDVAI
KVLKQGTEKADTEEMMREAQIMHQLD
NPYIVRLIGVCQAEALMLVMEMAGGG
PLHKFLVGKREEIPVSNVAELLHQVSM
GMKYLEEKNFVHRDLAARNVLLVNRH
YAKISDFGLSKALGADDSYYTARSAGK
WPLKWYAPECINFRKFSSRSDVWSYG
VTMWEALSYGQKPYKKMKGPEVMAFI
EQGKRMEPPECPPELYALMSDCWIYK
WEDRPDFLTVEQRMRACYYSLASKVE
GPPGSTQKAEAACA 

 

Table S2. Physical properties of LAT clusters 

 Size Roundness Half recover time 
Minimal components  

(LAT, Grb2, and Sos1) 
0.39 + 0.02 µm2 

(N=277) 
0.79 + 0.11 

(N=277) 
76 + 12 sec  

(N=7) 
Full pathway  

(TCR-LAT-actin) 
0.82 + 0.03 µm2 

(N=301) 
0.51 + 0.21 

(N=301) 
98 + 37 sec  

(N=10) 
 
Shown are mean + S.E. for size, mean + S.D. for roundness and half recover time. N 
indicates the number of clusters quantified. 
 

Movie S1. Single molecule imaging of pLAT on supported lipid bilayers. His8-pLAT-
Cy3B was attached to Ni-functionalized lipid bilayers at ~0.15 molecules/µm2. pLAT 
mobility was revealed by TIRF imaging. Shown is a field view of 20 µm x 20 µm. The 
movie is played at 20 fps with a frame interval of 30 ms. 

Movie S2. Assembly and disassembly of LAT clusters. His8-pLAT-Alexa488 was 
attached to Ni-functionalized lipid bilayers at 1000 molecules/µm2. Clusters were formed 
after Grb2 (0.5 µM) and Sos1(0.25 µM) was added at 0 min. Protein tyrosine 
phosphatase PTP1B (2 µM) was added at time 9 min and disassembled clusters. Shown is 
a field view of 24 µm x 24 µm. The movie is played at 20 fps with a frame interval of 5 s. 
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Movie S3. Single molecule imaging of a single pLAT molecule (red) trapped by a 
cluster (green), released, and re-trapped by another cluster. pLAT-Alexa488 (300 
molecules/µm2) was incubated with Grb2 (0.5 µM) and Sos1 (0.25 µM). pLAT-TMR 
was included at 0.07 molecules/µm2. To generate this movie, a single image of pLAT-
Alexa488 (to indicate cluster position) was superimposed onto a timelapse video 
recording pLAT-TMR movement. Shown is a field view of 6 µm x 6 µm. The movie is 
played at 10 fps with a frame interval of 50 ms. 

Movie S4. Reconstitution of a TCR-LAT-actin pathway. TIRF microscopy revealed 
LAT clustering (blue) followed by actin polymerization (red) on supported lipid bilayers. 
The same condition was used as in Fig. 3D. ATP was added at 2:00. Shown is a field 
view of 24 µm x 24 µm. The movie is played at 10 fps with a frame interval of 1 min. 

Movie S5. Reconstitution of a TCR-LAT-actin pathway in the absence of actin. TIRF 
microscopy revealed LAT clustering (blue) on supported lipid bilayers. Note that in 
contrast to Video 4, LAT clusters did not elongate in the absence of actin. The same 
condition was used as in Fig. 3D except actin was omitted. ATP was added at 2:00. 
Shown is a field view of 24 µm x 24 µm. The movie is played at 10 fps with a frame 
interval of 1 min. 
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