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a b s t r a c t 

A deep understanding of the neural architecture of mental function should enable the accurate prediction of 

a specific pattern of brain activity for any psychological task, based only on the cognitive functions known to 

be engaged by that task. Encoding models (EMs), which predict neural responses from known features (e.g., 

stimulus properties), have succeeded in circumscribed domains (e.g., visual neuroscience), but implementing 

domain-general EMs that predict brain-wide activity for arbitrary tasks has been limited mainly by availability 

of datasets that 1) sufficiently span a large space of psychological functions, and 2) are sufficiently annotated 

with such functions to allow robust EM specification. We examine the use of EMs based on a formal specifica- 

tion of psychological function, to predict cortical activation patterns across a broad range of tasks. We utilized 

the Multi-Domain Task Battery, a dataset in which 24 subjects completed 32 ten-minute fMRI scans, switching 

tasks every 35 s and engaging in 44 total conditions of diverse psychological manipulations. Conditions were 

annotated by a group of experts using the Cognitive Atlas ontology to identify putatively engaged functions, 

and region-wise cognitive EMs (CEMs) were fit, for individual subjects, on neocortical responses. We found that 

CEMs predicted cortical activation maps of held-out tasks with high accuracy, outperforming a permutation-based 

null model while approaching the noise ceiling of the data, without being driven solely by either cognitive or 

perceptual-motor features. Hierarchical clustering on the similarity structure of CEM generalization errors re- 

vealed relationships amongst psychological functions. Spatial distributions of feature importances systematically 

overlapped with large-scale resting-state functional networks (RSNs), supporting the hypothesis of functional 

specialization within RSNs while grounding their function in an interpretable data-driven manner. Our imple- 

mentation and validation of CEMs provides a proof of principle for the utility of formal ontologies in cognitive 

neuroscience and motivates the use of CEMs in the further testing of cognitive theories. 

1. Introduction 

A deep understanding of the neural architecture of mental function 

should enable the accurate prediction of a specific pattern of brain activ- 

ity for any given psychological task, based only on the cognitive func- 

tions known to be engaged by that task. This type of prediction has 

been achieved in a number of specific domains using voxelwise encod- 

ing models (EMs), which aim to predict neural responses from a set of 

known features (such as stimulus features or computational model com- 

ponents) ( Naselaris et al. 2011 ; Serences and Saproo 2012 ). These mod- 

els have been particularly effective in visual neuroscience, where they 

have been used to characterize neuronal mechanisms of attention (e.g., 

∗ Corresponding author at: Building 420, 450 Jane Stanford Way, Stanford CA 94305. 

E-mail address: waltersj@stanford.edu (J. Walters) . 

Ester et al. 2016 ), motion perception (e.g., Vintch and Gardner, 2014 ), 

and natural image processing (e.g., Kay et al. 2008 ), among many oth- 

ers. They have also been applied in the context of language, where they 

have been used with models that embed linguistic stimuli in a low- 

dimensional space to predict patterns of brain activity for untrained 

words ( Mitchell et al., 2008 ) and to create a cortical atlas of semantic 

space ( Huth et al., 2016 ). 

In the present work we examine the use of encoding models based 

on a formal specification of cognitive function, known as a cognitive on- 

tology ( Poldrack and Yarkoni 2016 ), to predict cortical activation pat- 

terns for cognitive tasks. In particular, we utilize the Cognitive Atlas 

( Poldrack et al., 2011 ), a knowledge base that defines a set of cognitive 

https://doi.org/10.1016/j.neuroimage.2022.119610 . 
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functions and the way that they are measured in various tasks. The re- 

sulting cognitive encoding models (CEMs) map from an annotation of 

the functions engaged by any particular task condition to activation at 

each location in the brain. The implementation and validation of such 

models provides a proof of principle for the utility of formal ontologies 

in cognitive neuroscience and motivates the use of this approach in the 

further testing of cognitive theories, which often vary in their predic- 

tions regarding the cognitive functions engaged by any given task. 

The implementation of cognitive encoding models has been limited 

in large part by the availability of datasets that 1) are sufficiently broad 

to span a large space of cognitive functions, and 2) are sufficiently an- 

notated with respect to these functions to allow robust specification of 

the encoding model. To address this challenge, we utilized the Multi- 

Domain Task Battery ( King et al., 2019 ), in which 24 subjects completed 

32 ∼10-minute fMRI scans, switching tasks every 35 s and engaging in 

44 total task conditions spanning a wide range of cognitive functions. 

Each of the task conditions was annotated by a set of experts using the 

Cognitive Atlas to identify the putatively engaged cognitive functions. 

We then fit CEMs based on task responses estimated from a set of regions 

spanning the entire neocortex ( Schaefer et al., 2018 ), and assessed the 

degree to which these models could accurately predict brain responses 

on held-out task conditions. 

Our work extends several recent studies that have attempted to de- 

code cognitive functions using cognitive ontologies or to predict ac- 

tivation for novel tasks using cognitive relations between tasks. One 

recent study ( Varoquaux et al., 2018 ) demonstrated the utility of a 

cognitive ontology for decoding concepts from patterns of brain acti- 

vation, using population-level data aggregated across 30 fMRI studies 

(196 total experimental conditions) ( Varoquaux et al., 2018 ). Training 

on many diverse conditions and accurately decoding concepts for unseen 

conditions provided strong evidence that ontology-based approaches 

may be useful for establishing selective associations between brain re- 

gions/networks and particular cognitive functions. However, the fea- 

tures in this study were relatively task-focused (e.g. stimulus or response 

features), unlike the function-focused features used in the present pa- 

per. Another recent study ( Nakai and Nishimoto, 2020 ) showed the ef- 

fectiveness of metadata-based features in an encoding model to predict 

brain activity and to decode tasks (instead of concepts), using subject- 

level data (103 total tasks) ( Nakai and Nishimoto, 2020 ). This study 

also demonstrated the ability to predict activation patterns for unseen 

tasks, using a latent feature space derived from the Neurosynth database 

( Yarkoni et al., 2011 ). The ability to predict activation patterns for novel 

tasks based on data from other tasks was also demonstrated by Pinho 

et al., ( Pinho et al., 2021 ), using the extensive Individualized Brain 

Charting database ( Pinho et al., 2018 ). 

In the present study, we extend these previous studies by developing 

cognitive encoding models using expert cognitive annotations of a broad 

range of tasks. We first assess the ability of individualized CEMs to pre- 

dict brain activation patterns for unseen tasks, comparing generalization 

performance to a permutation-based null model and other benchmarks. 

Next, we perform hierarchical clustering on the similarity structure of 

CEM generalization errors to examine relations amongst ontological en- 

tities. To quantify CEM generalization across subjects, we train CEMs 

using the data from a single subject and then evaluate how well this 

model can predict the activation patterns for each of the other individu- 

als, repeating this process for each subject. Finally, we characterize the 

cognitive relevance of canonical large-scale resting-state functional net- 

works by examining the strength of learned regression weights within 

each network. 

2. Methods 

2.1. Data and code availability 

The data used in this study are openly available via OpenNeuro 

(King et al., 2020, doi: 10.18112/openneuro.ds002105.v1.1.0). All anal- 

ysis code is available at https://github.com/waltersjonathon/cognitive _ 

encoding _ models . 

2.2. Dataset 

We used the openly available Multi-Domain Task Battery fMRI 

dataset ( King et al., 2019 ), designed to measure a broad range of cogni- 

tive processes. All experimental protocols were approved in the orig- 

inal study by the Ethics committee at Western University (Protocol 

#107,293), including informed consent provided to all participants. In 

brief, 24 healthy subjects (16 F; age: M = 23.8, SD = 2.6) each engaged in 

47 diverse task conditions (e.g., finger tapping, movie watching, n-back, 

rest) across 32 ∼10-minute scans. Each scan consisted of a continuous 

task paradigm, in which subjects performed a sequence of 17 tasks (5 ‑sec 

instructions, 30 ‑sec task execution) presented in a random order fixed 

across subjects (see Fig. 1 for tasks and their annotations). Subjects were 

scanned on two task sets (A and B), and each task set had two scanning 

sessions (with 8 scans per session). 16 subjects were scanned on set A 

in year 1 and set B in year 2, while the other 8 subjects were scanned 

on set A in year 2 and set B 2–3 weeks later. The two task sets partially 

overlapped: 29 task conditions in A and 32 task conditions in B, with 14 

common to both. While the original paper considered target and non- 

target trials of the Verbal 2-back and Object 2-back tasks as different 

conditions (resulting in 4 total conditions), the current study viewed 

working memory load as constant across the trial types and thus consid- 

ered each version of the n-back task as a single condition (resulting in 

2 total conditions). Moreover, since contrasts in the present study were 

computed relative to the Rest condition, all analyses described herein 

are based on 44 unique task conditions. Finally, one subject ( sub-29) 

was excluded from analyses due to failure of fMRI preprocessing. 

2.3. fMRI data 

Results included in this manuscript come from preprocessing 

performed using fMRIPrep 1.5.1rc1 ( Esteban, Markiewicz, et al., 

2018 , 2018 , RRID:SCR_016216), which is based on Nipype 1.3.0- 

rc1 ( Gorgolewski et al., 2011 , 2018 , RRID:SCR_002502). Many inter- 

nal operations of fMRIPrep use Nilearn 0.5.2 ( Abraham et al., 2014 , 

RRID:SCR_001362), mostly within the functional processing workflow. 

The anatomical and functional data preprocessing descriptions below 

are adapted from automated output of fMRIPrep. 

2.3.1. Anatomical data preprocessing 

For each subject, a T1-weighted (T1w) image was corrected 

for intensity non-uniformity (INU) with “N4BiasFieldCorrection ”

( Tustison et al., 2010 ), distributed with ANTs 2.2.0 ( Avants et al., 

2008 , RRID:SCR_004757). The T1w-reference was then skull-stripped 

with a Nipype implementation of the “antsBrainExtraction.sh ” work- 

flow (from ANTs), using OASIS30ANTs as target template. Brain tis- 

sue segmentation of cerebrospinal fluid (CSF), white-matter (WM) 

and gray-matter (GM) was performed on the brain-extracted T1w us- 

ing FAST (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith, 

2001 ). A T1w-reference map was computed after registration of 

the T1w image (after INU-correction) using “mri_robust_template ”

(FreeSurfer 6.0.1, Reuter, Rosas, and Fischl, 2010 ). Brain surfaces were 

reconstructed using “recon-all ” (FreeSurfer 6.0.1, RRID:SCR_001847, 

Dale, Fischl, and Sereno, 1999 ), and the brain mask was refined 

with a custom variation of the method to reconcile ANTs-derived and 

FreeSurfer-derived segmentations of the cortical gray-matter of Mind- 

boggle (Klein et al., 2017, RRID:SCR_002438). Volume-based spatial 

normalization to the ICBM 152 Nonlinear Asymmetrical template ver- 

sion 2009c ( Fonov et al. 2009 , RRID:SCR_008796; TemplateFlow ID: 

MNI152NLin2009cAsym] was performed through nonlinear registration 

with “antsRegistration ” (ANTs 2.2.0), using brain-extracted versions of 

both T1w reference and the T1w template. 
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2.3.2. Functional data preprocessing 

For each of the 32 BOLD runs per subject, the following pre- 

processing was performed. First, a reference volume and its 

skull-stripped version were generated using a custom method- 

ology of fMRIPrep . A deformation field to correct for suscep- 

tibility distortions was estimated based on a field map that 

was co-registered to the BOLD reference, using a custom work- 

flow of fMRIPrep derived from D. Greve’s “epidewarp.fsl ” script 

( https://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl ) 

and further improvements of HCP Pipelines ( Glasser et al., 2013 ). Based 

on the estimated susceptibility distortion, an unwarped BOLD reference 

was calculated for a more accurate co-registration with the anatomical 

reference. 

The BOLD reference was then co-registered to the T1w reference us- 

ing “bbregister ” (FreeSurfer) which implements boundary-based regis- 

tration ( Greve and Fischl, 2009 ). Co-registration was configured with 

six degrees of freedom. Head-motion parameters with respect to the 

BOLD reference (transformation matrices, and six corresponding rota- 

tion and translation parameters) were estimated before any spatiotem- 

poral filtering using “mcflirt ” (FSL 5.0.9, Jenkinson et al., 2002 ). BOLD 

runs were slice-time corrected using “3dTshift ” from AFNI 20,160,207 

( Cox and Hyde 1997 , RRID:SCR_005927). The BOLD time-series were 

resampled to surfaces on the following spaces: fsaverage5 . The BOLD 

time-series (including slice-timing correction when applied) were re- 

sampled onto their original, native space by applying a single, compos- 

ite transform to correct for head motion and susceptibility distortions. 

These resampled BOLD time-series will be referred to as preprocessed 

BOLD in original space , or just preprocessed BOLD . The BOLD time-series 

were resampled into standard space, generating a preprocessed BOLD 

run in MNI152NLin2009cAsym space. First, a reference volume and its 

skull-stripped version were generated using a custom methodology of 

fMRIPrep . Several confounding time-series were calculated based on the 

preprocessed BOLD: framewise displacement (FD), DVARS and three 

region-wise global signals. FD and DVARS were calculated for each func- 

tional run, both using their implementations in Nipype (following the 

definitions by Power et al. 2014 ). Three global signals were extracted 

from the CSF, the WM, and the whole-brain masks. Additionally, a set 

of physiological regressors were extracted to allow for component-based 

noise correction ( CompCor , Behzadi et al., 2007 ). 

Principal components were estimated after high-pass filtering the 

preprocessed BOLD time-series (using a discrete cosine filter with 128 s 

cut-off) for anatomical CompCor (aCompCor) . A subcortical mask was 

obtained by heavily eroding the brain mask to exclude cortical GM re- 

gions. Components for aCompCor were calculated within the intersec- 

tion of the aforementioned mask and the union of CSF and WM masks 

calculated in T1w space. Components were also calculated separately 

within the WM and CSF masks, and the k components with the largest 

singular values were retained, such that the retained components’ time 

series were sufficient to explain 50 percent of variance across the nui- 

sance mask (CSF, WM, or combined). The remaining components were 

dropped from consideration. 

The confound time series derived from head motion estimates and 

global signals were expanded with the inclusion of temporal derivatives 

and quadratic terms for each ( Satterthwaite et al., 2013 ). All resam- 

plings were performed with a single interpolation step by composing all 

the pertinent transformations (i.e. head-motion transform matrices, sus- 

ceptibility distortion correction when available, and co-registrations to 

anatomical and output spaces). Gridded (volumetric) resamplings were 

performed using “antsApplyTransforms ” (ANTs), configured with Lanc- 

zos interpolation to minimize the smoothing effects of other kernels 

( Lanczos, 1964 ). 

2.3.3. Statistical maps and parcellation 

In the MDTB dataset, subjects were scanned on two task sets, sepa- 

rated by 2–3 weeks ( n = 8) or a year ( n = 16), with two scanning sessions 

per task set and 8 scans per session. Since the two task sets shared a sub- 

Table 1 

Task conditions, associated meta-tasks, and task regressor durations used in first- 

level modeling of fMRI data. 

Task condition Meta-task Duration 

Rest Rest 30 

Spatial Imagery Spatial Imagery 30 

Motor Imagery Motor Imagery 30 

Verbal 2-back Verbal 2-back 30 

Object 2-back Object 2-back 30 

Object Viewing Object Viewing 30 

Theory of Mind Theory of Mind 30 

Interval Timing Interval Timing 30 

Movie (Nature) Nature Movie 30 

Movie (Landscape) Landscape Movie 30 

Movie (Animated) Animated Movie 30 

Permuted Rules (CPRO) CPRO 30 

Word Reading Words 16 

Verb Generation Words 14 

Digit Judgment Numbers 15 

Math Numbers 15 

Finger Sequence Finger Tapping 15 

Finger Simple Finger Tapping 15 

Video (Actions) Video Action-Knots 15 

Video (Knots) Video Action-Knots 15 

Scrambled Motion Motion Perception 15 

Biological Motion Motion Perception 15 

Visual Search (Easy) Visual Search 10 

Visual Search (Med) Visual Search 10 

Visual Search (Hard) Visual Search 10 

Mental Rotation (Easy) Mental Rotation 10 

Mental Rotation (Med) Mental Rotation 10 

Mental Rotation (Hard) Mental Rotation 10 

Response Alt. (Easy) Response Alternatives 10 

Response Alt. (Med) Response Alternatives 10 

Response Alt. (Hard) Response Alternatives 10 

Spatial Map (Easy) Spatial Map 10 

Spatial Map (Med) Spatial Map 10 

Spatial Map (Hard) Spatial Map 10 

Prediction (Scrambled) Prediction 5 

Prediction (Violated) Prediction 5 

Prediction (True) Prediction 5 

Instructions Instructions 5 

Stroop (Congruent) Stroop 2 

Stroop (Incongruent) Stroop 2 

Pleasant Scenes Scene Viewing 2 

Unpleasant Scenes Scene Viewing 2 

Happy Faces Face Viewing 2 

Sad Faces Face Viewing 2 

Go Go No-Go 1 

No Go Go No-Go 1 

set of tasks, data for each task was available in either two or four scan 

sessions. Thus, for each subject, two or four statistical activation maps 

were estimated for each of the 44 task conditions. Maps were generated 

by first fitting a general linear model (GLM) to the time series of each 

voxel, separately for each of the 32 imaging runs. A fixed effects analysis 

then combined runs within sessions, and session-wise contrasts of con- 

dition > rest were computed for each task condition, with the resulting 

t-statistics converted to z-scores. 

Task conditions, including the 5-second instruction screen preceding 

each 30-second task block, were modeled in the GLM as boxcar or event- 

related regressors convolved with the canonical hemodynamic response 

function (SPM). The duration of each regressor varied by condition (30, 

16, 15, 14, 10, 5, 2, or 1 s; see Table 1 for the complete description). The 

other regressors included in the model were confounds estimated from 

fMRI preprocessing: 6 motion parameter estimates, framewise displace- 

ment, 7 cosine bases for high-pass filtering, and the first 6 components 

from anatomical CompCor. A first-order autoregressive model was used 

to model the temporal structure of the noise. 

For computational speed during model training and testing, we par- 

cellated the resulting z-maps into 1000 cortical regions, using an atlas 

derived from resting-state data that was optimized for both local and 
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Fig. 1. Annotation of tasks with ontological features drawn from the Cognitive Atlas ontology. “C ” and “PM ” indicate whether the feature was considered to be 

Cognitive or Perceptual-Motor . 

global spatial signal variability ( Schaefer et al., 2018 ). In doing so, the 

z-score of a given region was calculated as the average across its voxels. 

2.4. Labeling tasks with ontological feature vectors 

A group of five cognitive scientists [JW, MK, PB, RI, RP] col- 

laboratively and iteratively labeled the 44 tasks with 36 cognitive, 

perceptual, and motor features ( Fig. 1 ) based on a conceptual 

analysis of each task. Annotations, along with entities and re- 

lations in the Cognitive Atlas, were updated throughout several 

iterations of the labeling process. Each feature corresponded to 

an entity in the Atlas, such as “working memory maintenance ”

( https://www.cognitiveatlas.org/concept/id/trm_55b6b9d7c9435 ). 

The resulting feature vectors captured the tasks’ partially overlapping 

functional requirements. Most of the features were binary (e.g., ‘Vi- 

sual word recognition’, ‘Updating’, ‘Motor planning’), indicating the 

presence or absence of a particular operation while executing the task. 

Three features were parametrically coded to reflect the magnitude of 

their involvement: 1) ‘Response alternatives’ (0, 1, 2, 4, 6, or 7 response 

options), 2) ‘Left hand response execution’ (0, 1, 2, 5, 7, 8, 12, or 15 

responses in a task block, and 3) ‘Right hand response execution’ (0, 

1, 2, 3, 4, 5, 7, 8, 12, or 15 responses in a task block). These three 

features were recoded as the index of their respective rank-orderings, 

with 0 being the smallest value, and were then scaled to a range of 0 

to 1. Additionally, all features were manually classified as being either 

primarily cognitive or perceptual/motor in nature ( Supplementary 

Table 1 ) in order to assess the relative importance of those two classes 

of features in the model. 

2.5. Cognitive encoding models (CEMs) 

2.5.1. Training and testing 

For each subject, region-wise cognitive encoding models (CEMs) 

were trained to predict responses across tasks from features that cap- 

tured the tasks’ psychological requirements, as formalized by an ontol- 

ogy. This region-wise linear mapping from ontological space to brain 

activation space was learned using ridge regression. In principle, once 

region-wise CEMs are learned, a cortical activation pattern can be pre- 

dicted for any arbitrary task from its ontological feature vector. 

To estimate generalization performance to unseen tasks, a leave-two- 

out cross-validation (CV) scheme was employed ( Mitchell et al., 2008 ). 

In each CV split, region-wise CEMs were trained on 42 tasks, and the 

activation patterns of the two held-out tasks were predicted. Three per- 

formance metrics were then measured: two-way classification accuracy 

(see below), map-wise Pearson’s r, and R 

2 . 

A nested-CV scheme was necessary to select the regularization 

strength parameter alpha . The outer loop (leave-two-out CV) used a 

correlation-based minimum-distance classifier to classify each of the two 

4 

https://www.cognitiveatlas.org/concept/id/trm_55b6b9d7c9435


J. Walters, M. King, P.G. Bissett et al. NeuroImage 263 (2022) 119610 

Fig. 2. Training and testing procedure for cognitive encoding models (CEMs), showing an example cross-validation split. (1) In a leave-two-out cross-validation 

scheme, region-wise CEMs are trained with ridge regression to predict regional activation across 42 of 44 tasks. An inner 10-fold CV loop fits the regularization 

parameter alpha. An example brain region is shown. (2) Trained CEMs are then used to predict the maps of two held-out tasks. An example prediction is displayed. 

(3) Two-way classification accuracy for the two held-out tasks is then calculated, in which a correlation-based minimum-distance classifier assigns each predicted 

map to one of the held-out tasks. Accuracy is correct only if both predicted maps are correctly classified (leading to a theoretical chance accuracy of 0.25). The 

average accuracy across all splits is calculated per subject. Example predictions of the Word Reading (left) and Animated Movie Watching (right) tasks are shown 

for sub-03. Note that, for each held-out task, either two or four true maps are present (corresponding to the two or four imaging runs in which the task appeared), 

and the average correlation across these maps serves as input to the classifier (for brevity, these additional maps are not displayed). 

predicted maps as one of the two true held-out maps, and an inner loop 

(10-fold CV) found the optimal alpha using Pearson’s r between true and 

predicted maps as the scoring function. The following alpha values were 

used in the parameter search: [0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10]. 

Map-wise Pearson’s r (and R 

2 ) was computed for each of the two 

held-out tasks in each CV split (44 tasks choose 2 = 946 total splits). 

Since the predicted map of one task was associated with either two 

or four observed maps (derived from two or four fMRI imaging ses- 

sions), its map-wise correlation was taken as the average across ses- 

sions. The resulting 1892 averaged correlations across all CV splits 

were then averaged to obtain a single map-wise correlation for a 

given subject, providing a summary of estimated generalization to 

unseen tasks. For the noise ceiling analysis (described below) com- 

puted at the level of tasks, these 1892 values were also averaged by 

task. 

2.5.2. Two-way classification accuracy 

Classification accuracy was computed using a leave-two-out CV 

scheme based on Mitchell et al. (2008) . In each fold, the trained region- 

wise CEMs predicted the statistical activation maps of two held-out 

tasks. A correlation-based minimum-distance classifier, classified each 

of the two predicted maps as belonging to one of the two tasks. Since 

one predicted map was associated with either two or four observed maps 

(corresponding to two or four fMRI imaging sessions), the average Pear- 

son correlation across the two or four sessions served as input to the clas- 

sifier. Two-way classification accuracy was considered correct if both 

predicted images were correctly classified ( Fig. 2 ), leading to a theoret- 

ical chance level of 25% accuracy. 

2.5.3. Noise ceiling 

In general when evaluating encoding models, it is important to in- 

terpret model performance relative to the noise ceiling of the data (i.e. 

its reliability). While our models are trained at the level of individual 

brain regions, our main interest and analyses revolve around predictions 

for individual subjects at the level of cortical activation maps evoked 

by tasks. Thus, to allow for direct comparison between model perfor- 

mance and an upper limit of explainable variance, we quantified the 

noise ceiling of each task, for each subject, as the square root of the 

between-session reliability (Pearson’s r ) of the activation maps ( Lage- 

Castellanos et al., 2019 ). For tasks that were completed at both time- 

points and thus had two between-session reliability estimates, these re- 

liabilities were averaged in any downstream analyses. 

2.5.4. Task-shuffled null model 

We compared CEM performance to a task-shuffled (permutation- 

based) null model. In each permutation, tasks were randomly remapped 

to one another such that each task’s feature vector was replaced by that 

of another task. This procedure thus targeted the relationship between 

tasks’ ontological features and regions’ activations. Notably, because 

each task had two or four corresponding rows in the original design 

matrix (depending on whether the task appeared in two or four imag- 

ing sessions), this method of randomizing the design matrix preserved 

blocks of tasks (i.e., the two or four rows of a given task all received 
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Fig. 3. Cross-validated (CV) performance metrics for individualized cognitive encoding models (CEMs). (left) CV classification accuracy across subjects, for the full 

feature set (all features, ‘A’), its Cognitive (‘C’) and Perceptual-Motor (‘P’) subsets, and the permutation-based null model. Dashed line indicates theoretical chance 

accuracy of 25%. (middle) Average Pearson’s r between true and predicted statistical activation maps. (right) Average R 2 between true and predicted statistical 

activation maps. To obtain the average map-wise r and R 2 for a given subject, in each of the 946 CV splits r or R 2 was first calculated for each of the two held-out 

tasks (on each of their two or four predicted maps, corresponding to the two or four imaging sessions in which the held-out task appeared), and the resulting values 

across all splits were then averaged. 

identical feature vectors from another task); however, column densi- 

ties were not preserved (i.e., feature vectors that originally appeared in 

two rows could appear in four rows, or vice-versa), which at least par- 

tially violated the assumption of exchangeability. Randomization and 

training/testing (using the same nested cross-validation procedure as 

the main models) was repeated for 20 iterations, and final performance 

metrics for each subject were calculated as the average across iterations. 

2.6. Feature set comparison 

To assess the relative importance of the Cognitive and Perceptual- 

Motor features in model performance, all of the main analyses pre- 

sented in this paper were performed on three different feature sets: all 

36 features ( All ), 24 higher-order cognitive features ( Cognitive ), and 12 

perceptual-motor features ( Perceptual-Motor ). Assignment of features to 

these groups was based on expert judgment of authors JW and RP. 

2.7. Hierarchical relations between ontological entities 

The hierarchical organization of cognitive functions was examined 

based on classifier generalization errors. First, a confusion matrix was 

generated by calculating, for each task, how often its predicted pat- 

tern was classified correctly or was misclassified as each of the other 

tasks. These results were aggregated across subjects by considering all 

CV splits from all subjects. This confusion matrix was projected into cog- 

nitive space by multiplying the confusion matrix by the feature matrix. 

Next, a representational dissimilarity matrix (RDM) was constructed us- 

ing 1-correlation as the distance metric. Finally, hierarchical agglomer- 

ative clustering was applied to the RDM using the UPGMA algorithm. 

2.8. Between-subject similarity of brain function 

We measured how well CEMs generalized between subjects by train- 

ing CEMs on each subject individually and then testing each of these 

“source ” subject’s CEMs on every other “target ” subject. CEMs were 

trained on all 44 tasks and these parameters were then used to predict 

the activation patterns for all other subjects. Two-way classification ac- 

curacy was then calculated for every pair of tasks (analogous to the main 

analyses) for every target subject. 

2.9. Using CEMs to characterize the cognitive relevance of large-scale 

resting state networks 

Seven canonical large-scale functional resting-state networks (RSNs) 

( Yeo et al., 2011 ) were probed for their cognitive relevance using the 

individualized CEMs. Feature importances were estimated within each 

RSN by aggregating regional model coefficients across subjects from 

their individualized CEMs, and then aggregating across regions within 

each RSN. Specifically, for a given region and feature, the coefficients 

across subjects were first averaged. Then, for a given network and fea- 

ture, these subject-averaged values were averaged across all regions 

within the network. This procedure allowed us to address whether 

spatial distributions of brain functions systematically overlapped with 

known functional networks. 

3. Results 

3.1. Cognitive encoding models generalize well to unseen tasks 

3.1.1. General CEM performance 

CEMs generalized well to unseen tasks ( Fig. 3 ; example predictions in 

Fig. 4 ), with an average cross-validated two-way classification accuracy 

well above chance-level performance of 0.25 for all three feature sets: 

All ( M = 0.65, SD = 0.07); Cognitive ( M = 0.40, SD = 0.06); Perceptual- 

Motor ( M = 0.60, SD = 0.07). The task-shuffled null model showed 

performance below the theoretical chance accuracy level ( M = 0.09, 

SD = 0.02). 

Additionally, relative to the null model, the predicted activation 

maps of CEMs showed stronger positive correlations with the true held- 

out maps: All ( M = 0.69, SD = 0.08); Cognitive ( M = 0.63, SD = 0.09); 

Perceptual-Motor ( M = 0.67, SD = 0.08); task-shuffled ( M = 0.54, 

SD = 0.09). The three feature sets also showed higher R 

2 than the null 

model: All ( M = 0.38, SD = 0.13); Cognitive ( M = 0.22, SD = 0.13); 

Perceptual-Motor ( M = 0.35, SD = 0.13); task-shuffled ( M = 0.09, 

SD = 0.12) (see Supplementary Fig. 1 for region-wise R 

2 values). 

The null model’s classification accuracy was systematically below 

chance due to a bias towards predicting the mean of the training data 

(this also explains its relatively high R 

2 ; see Supplementary Fig. 2 for 

additional details). 

3.1.2. Feature set comparison 

Next, we asked how two-way classification accuracy differed be- 

tween the three feature sets. Notably, though the number of features 

varied across models, our cross-validation procedure provided an im- 

plicit control for this difference. A one-way repeated measures ANOVA 

revealed a significant difference between feature sets, F(2, 44) = 750.66, 

p < .001. A post hoc analysis with three Bonferroni-corrected paired 

samples t-tests revealed that All significantly outperformed both Cog- 

nitive ( t (22) = 32.69, p < .001) and Perceptual-Motor ( t (22) = 10.50, 

p < .001), and Perceptual-Motor significantly outperformed Cognitive 

( t (22) = 26.26, p < .001). 

This pattern of results indicates that the Cognitive and Perceptual- 

Motor feature spaces each provided valuable information in predict- 

ing patterns of cortical activation and that CEM performance was not 

driven exclusively by perceptual-motor features. Thus, the inclusion of 
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Fig. 4. Six example out-of-sample predictions of task-evoked brain activation during cross-validation for sub-02 . Predictions are ordered from lowest to highest 

correlation with the true maps: Spatial Imagery : − 0.27, Stroop (Incongruent) : 0.50, Theory of Mind : 0.58, Finger Sequence : 0.61, Visual Search (Medium) : 0.88, Movie 

(Nature) : 0.93). Color scale indicates true and predicted z-scores, ranging from − 3 to 3. 

Fig. 5. Comparison of model performance (out-of-sample correlation between true and prediction activation maps) with the noise ceiling (square root of between- 

session correlation). Each point represents one of 44 tasks for a given subject. 

features that broadly span the space of mental functions (from lower- 

level perceptual-motor functions to higher-level cognitive functions) in 

region-wise encoding models may lead to superior performance when 

predicting cortical activation maps of novel tasks. 

3.1.3. Noise ceiling 

To situate the encoding model results with respect to the noise ceiling 

of the data, for each subject and task we estimated the noise ceiling in 

the activation maps by computing the square root of the test-retest relia- 

bility (Pearson’s r ) between imaging sessions. The out-of-sample correla- 

tions for the individualized CEMs was comparable to the test-retest reli- 

abilities, with a Pearson’s r of 0.70 ( Fig. 5 ) (Model: M = 0.71, SD = 0.18; 

Noise Ceiling: M = 0.80, SD = 0.15). The average test-retest reliability 

for individual tasks ranged from 0.61 to 0.94 ( Supplementary Fig. 3 ) 

and for individual subjects ranged from 0.44 to 0.90 ( Supplementary 

Fig. 4 ). These results indicate that CEMs successfully learned a general- 

izable mapping from ontological space to brain activation space, overall 

approaching but generally not exceeding the noise ceiling. 

The instances where the noise ceiling was exceeded (176 of 1012 

task-subject pairs, or 17.4%) were driven by two related factors. First, 

the five subjects with the lowest average test-retest reliabilities com- 

prised 42% of such cases, suggesting that reliability estimates may have 

been artifactually low in these cases. Second, there were five meta-tasks 

in the MDTB that each had three task conditions (i.e., Mental Rotation, 

Spatial Map, Visual Search, Response Alternatives, and Prediction), and 

these task conditions comprised 70% of such cases. Thus, for these tasks, 

correlations for out-of-sample predictions during cross-validation were 

likely boosted when one or two of the related conditions were present in 

the training data. However, as explained in the following section, model 

performance in general was not driven solely by such dependencies. 

3.1.4. Model performance is not driven solely by dependencies between 

train and test data induced by cross-validation splits 

As some of the tasks defined in the encoding models are experimental 

conditions derived from the same meta-task (e.g., Easy, Medium, and 

Hard trials in the Mental Rotation meta-task), we examined whether 

our main results were driven purely by the subset of cross-validation 

splits in which one or both of the held-out test tasks had counterparts in 

the training data (i.e., thereby increasing statistical dependence between 

training and testing data). We found that, for splits in which neither of 

the test tasks had counterparts in the training data, all three feature 

sets nevertheless performed above the theoretical chance accuracy level 

of 25% ( Fig. 6 ), providing strong evidence that the generalizability of 

these encoding models was not an artifact of statistical dependencies 

induced by particular cross-validation splits. However, it was also clear 

that performance increased as the match of tasks between training and 
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Fig. 6. Cross-validated (CV) two-way classification accuracy 

for each feature set and type of cross-validation split. Some 

tasks defined in the encoding models are experimental con- 

ditions derived from the same meta-task (e.g., Easy, Medium, 

and Hard trials in the Mental Rotation meta-task), and there- 

fore each CV split had zero, one, or two of the held-out tasks 

with a counterpart in the training data. Regardless of CV split 

type, accuracy remained above theoretical chance for all three 

feature sets. 

test splits increased, and that this was driven primarily by perceptual- 

motor features. 

3.2. Classifier generalization errors reveal hierarchical relationships 

between cognitive functions 

To examine relationships between ontological features, classifier 

generalization errors from the individualized CEMs were aggregated by 

task across subjects. Fig. 7 shows a clustered representational dissimi- 

larity matrix (RDM) for ontological entities based on classifier general- 

ization errors. 

3.3. Between-subject generalization 

We quantified how well CEMs generalized between subjects by 

training models on individual subjects and testing them on all others 

( Fig. 8 a). Subjects showed average generalization accuracies ( Fig. 8 b, 

top) ( M = 0.65, SD = 0.07) that were well above the theoretical chance 

accuracy level of 0.25 and below the self-transfer accuracies ( M = 0.84, 

SD = 0.06). Average CV correlation ( Fig. 8 b, bottom) on target sub- 

jects ( M = 0.36, SD = 0.03) was lower than self-transfer correlations 

( M = 0.68, SD = 0.06). 

3.4. Mapping spatial distributions of CEM coefficients onto large-scale 

resting state networks 

After validating the individualized CEMs, we sought to use the 

trained models to characterize the function of large-scale resting-state 

networks (RSNs) as an additional way of validating the results with re- 

gard to known functional associations. To do so, regional model coef- 

ficients from subjects’ CEMs were aggregated across subjects and then 

within RSNs, allowing for estimates of feature importance within each 

RSN. 

First, we tested the hypothesis that RSNs possess a degree of func- 

tional specialization, finding that CEM coefficients were more similar 

between regions in the same network than in different networks ( Figs. 9 

and 10 ) (within-network: M = 0.37, SD = 0.33; between-network: 

M = 0.05, SD = 0.36; p < .01, based on permutation tests randomizing 

within and between labels for 100 iterations). While this result is expected 

given that our encoding models as well as the definitions of regions and 

networks we used are both activity-based, it supports the hypothesis of 

functional specialization in large-scale RSNs while also grounding their 

function in an interpretable and data-driven manner. 

Next, we visualized the function of each network by generating word 

cloud representations of relative feature importances ( Fig. 11 ). Many 

of the dominant features across the networks reflect known functional 

associations. For example, the most positively weighted feature in the 

Visual Network (VN) is visual object recognition and in the Default Mode 

Network (DMN) is theory of mind . Interestingly, a few of the dominant 

features across networks did not match expectations based on prior work 

(e.g., autobiographical recall in the Somatomotor Network). 

4. Discussion 

In the present work we developed encoding models based on a cog- 

nitive ontology and applied them to an fMRI dataset that included a 

broad range of cognitive task conditions, with the goal of predicting ac- 

tivation patterns for held-out task conditions. The results demonstrated 

that these models can effectively predict activation patterns for novel 

tasks based on the annotation of cognitive processes engaged by the task, 

both within individuals and across individuals. The amount of variance 

accounted for across tasks by the predictive model varied, in some cases 

accounting for nearly all of the explainable variance in the maps. Assess- 

ment of the model parameters in relation to well-established large-scale 

brain systems demonstrated a mapping of functions largely consistent 

with known functional neuroanatomy. 

The present findings extend previous work that had established the 

ability of encoding models to predict task activation maps for broad sets 

of cognitive tasks (Pinho et al., 2021; Nakai and Nishimoto, 2020 ), by 

demonstrating the ability to use expert annotations of cognitive func- 

tions as the basis for the encoding model. This provides the potential 

to use cognitive encoding models to test cognitive theories; whereas 

cognitive theories rarely make specific predictions regarding locations 

of brain activation, they nearly always make predictions regarding the 

specific processes engaged by a particular set of tasks, and hence the 

similarity or overlap of task-related activation maps. By implementing 

encoding models based on competing cognitive theories and testing their 

predictive accuracy on out-of-sample data, this approach has the poten- 

tial to adjudicate theoretical questions using neuroimaging data, thus 

addressing the longstanding question of whether neuroscience data can 

inform cognitive theories (e.g., Coltheart 2006 ). 

4.1. Future directions 

The present approach could be used to learn a data-driven cognitive 

ontology that optimally predicts activation on new tasks. Although the 

generation of theories with scopes that are broad enough to span all 

of cognition is a major challenge, this approach can still be applied to 

more restricted functional domains with the goal of increasing scope 

over time. Accordingly, future studies using this approach could po- 

tentially leverage unsupervised learning applied to the task behavior 

( Eisenberg et al., 2019 ), additional information regarding the brain net- 

works engaged by those tasks ( Nakai and Nishimoto, 2020 ), or informa- 

tion from computational models fit to those tasks ( Stocco et al., 2021 ; 

Anderson et al., 2008 ). Alternatively, completely unsupervised meth- 

ods could be used to learn a novel “cognitive basis set ” optimized solely 
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Fig. 7. Hierarchical organization of cognitive 

functions based on patterns of classification errors 

for each task. Darker colors indicate greater fea- 

ture similarity. A confusion matrix was first gen- 

erated by calculating, for each task, how often its 

predicted pattern was classified correctly or was 

misclassified as each of the other tasks. Results 

were aggregated across subjects and CV splits. The 

confusion matrix was then projected into cogni- 

tive space by multiplying it with the feature ma- 

trix. Finally, a representational dissimilarity ma- 

trix (RDM) was constructed from the resulting ma- 

trix using 1-correlation as the distance metric, and 

hierarchical agglomerative clustering was applied 

to the RDM using the UPGMA algorithm. 

for prediction of activation maps. Another possibility is to use structural 

equation modeling on the covariance matrix between cortical activation 

maps to construct, test, and refine different latent representations of the 

underlying data-generation process. 

While the use of data-driven approaches to refine existing ontologies 

is appealing, it is challenging because there are multiple factors that 

must be considered, which include: the ontology itself, the mapping of 

the ontology to tasks, the ontological breadth of the measured tasks, 

the learning algorithm, and the quality of the neuroimaging data. For 

example, if it is observed that Theory of Mind (ToM) is a poor predictor, 

it could be the case that a) ToM is an ill-defined construct, b) ToM is 

not mapped appropriately to tasks, c) there is an insufficient breadth of 

tasks that engage both ToM and mixtures of other constructs (such that 

the effect of ToM cannot be disentangled from that of other constructs), 

d) the chosen learning algorithm fails to capture the true underlying 

relationship between ToM and cortical activation, and/or e) the quality 

of the data acquired on the ToM tasks is poor. 

The CEMs presented in this study model cortical activation univari- 

ately at the level of brain regions, whose collective predictions as an 

ensemble are then used for task classification. To more directly model 

patterns of brain activation, future work should also consider multivari- 

ate approaches that predict whole-brain responses from cognitive fea- 

tures, such as partial least squares or redundancy analysis. Another pos- 

sibility is to use a CEM to inform how much difference one would expect 

between cortical activation patterns, as measured by an appropriate dis- 

tance metric (e.g., a visual and an auditory task should be more different 

than two visual tasks). This type of prediction can be accomplished with 

multivariate distance matrix regression ( Zapala et al., 2006 ), which has 

already seen application to fMRI data ( Shehzad et al., 2014 ). 

Relatedly, while explaining differences in statistical activation maps 

is a valuable first step in building CEMs, future work should con- 

sider bypassing the use of general linear model estimates of task ac- 

tivation altogether, opting instead to more directly relate ontologies 

to minimally preprocessed BOLD time courses. This strategy of di- 

rectly mapping ontological entities to brain dynamics may ultimately 

provide the most illuminating application of CEMs, in part due to 

the reduction of bias that may arise if a modeler (however implic- 

itly) uses their own ontological knowledge in constructing the task 

regressors. 

Finally, the present study assessed the ability of a formal ontology 

to predict cortical activation patterns for unseen tasks, while holding 

the learning algorithm constant. Although this is a necessary first step 

in a proof-of-concept study for the utility of ontology-based cognitive 

encoding models, future work should systematically examine how vari- 

ability in algorithmic decisions (e.g., using different linear or nonlinear 

modeling frameworks) contributes to the predictive capacities of CEMs. 
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Fig. 8. Generalization of cognitive encoding models across 

subjects. (a) Transfer matrix showing the degree to which indi- 

vidualized CEMs trained on source subjects generalize to tar- 

get subjects (color bar indicates two-way classification accu- 

racy). (b) Individual differences in two-way classification ac- 

curacy (top) and correlation (bottom), when generalizing from 

one source subject to all other target subjects. For each source 

subject, CEMs were trained on all available data, and the pre- 

dictions from these models were then used in the calculation 

of cross-validated performance metrics for every other target 

subject (smaller gray dots), including the source subject (larger 

green dots). 

Fig. 9. Clustering (UPGMA method) of 1000 

brain regions based on the similarity (Pearson’s 

r ) of their model coefficients with other regions. 

These clusters exhibit a tight correspondence 

with known large-scale functional resting-state 

networks (indicated by color). 
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Fig. 10. Similarity of CEM coefficients for pairs of regions residing in the 

same or different large-scale resting-state network. Pairs of regions belonging 

to the same resting-state network showed more positively correlated feature 

weight vectors than pairs of regions from different networks. Asterisk indicates 

permutation-based statistical significance (100 iterations, p < .01). 

4.2. Limitations 

While the present work showed that a feature space based on ex- 

pert manual annotations of cognitive functions affords high predictive 

accuracy for unseen tasks, the labor-intensive nature of the labeling 

method limits its scalability. The labeling method can be thought of 

as a function from feature space to tasks, and, in order to generalize 

to new tasks, the same function needs to be applied to any new tasks. 

Thus, to increase consistency and scalability, future work will need to 

explore automated labeling schemes that operate upon feature spaces 

of cognitive processes. Unfortunately, standard text-mining approaches 

are likely too imprecise to provide the level of functional detail needed 

to develop such models, but one promising approach is to harness meth- 

ods for automatic knowledge extraction or for human-in-the-loop pro- 

grammatic or semi-supervised labeling (e.g., Ratner et al., 2017 ). Such 

approaches will likely be required to generalize from the current lim- 

ited annotations available to the broad range of tasks needed to develop 

“cognition-wide ” models. 

Another limitation of the current work involves simplifying assump- 

tions regarding how the features relate to tasks. It was assumed that 

all subjects performed tasks using the same mixture of psychological 

functions (i.e., what differed across subjects was the region-wise encod- 

ing of these features). Instead, it is likely that the psychological func- 

tions actually used to perform a given task differs across subjects. Fu- 

ture work could explore ways of optimizing the personalization of such 

labels, such as using models of task performance to infer task strategies 

(e.g. Roy et al., 2021 ). Relatedly, this work is limited in its modeling of 

regional activation in terms of linear combinations of the psychological 

features. Future work should consider exploring interactions between 

features, for example by explicitly including interaction terms in a lin- 

ear model or by using models capable of capturing non-linear interac- 

tions. Despite these simplifying assumptions, CEMs were still able to 

learn a generalizable mapping from ontological features to brain activa- 

tion quite well, approaching the noise ceiling. 

Finally, because the parcellation scheme used in this study computed 

regional activity by averaging across voxels, we caution readers that our 

analyses provide little, if any, interpretive value at the level of individual 

voxels. 

5. Conclusion 

Using a uniquely rich fMRI dataset, in which individuals were 

densely sampled performing 44 diverse tasks, we demonstrated the pre- 

dictive and interpretive utility of ontology-based feature spaces in en- 

coding models that generate subject-specific cortical activation patterns 

for unseen tasks. These results build on previous work that uses datasets 

of diverse tasks for functional brain mapping, providing further evidence 

for the utility of cognitive ontologies in consistently mapping cognitive 

functions to tasks and in selectively associating cognitive functions with 

their neural bases. 

Fig. 11. Word cloud representations of relative feature importances in seven canonical large-scale resting-state networks. For each feature, encoding model coeffi- 

cients were first averaged across subjects by region, and then averaged across regions within each network. Average coefficient magnitudes are mapped directly to 

font size; a feature with twice the magnitude of another feature is twice the font size. Only features with positive weights are included. 
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