45 research outputs found

    Decline in low-density lipoprotein cholesterol concentration: lipid-lowering drugs, diet, or physical activity? Evidence from the Whitehall II study

    Get PDF
    Objective To examine the association of lipid-lowering drugs, change in diet and physical activity with a decline in low-density lipoprotein (LDL) cholesterol in middle age.Design A prospective cohort study.Setting The Whitehall II study.Participants 4469 British civil servants (72% men) aged 39-62 years at baseline.Main Outcome Measure Change in LDL-cholesterol concentrations between the baseline (1991-3) and follow-up (2003-4).Results Mean LDL-cholesterol decreased from 4.38 to 3.52 mmol/l over a mean follow-up of 11.3 years. In a mutually adjusted model, a decline in LDL-cholesterol was greater among those who were taking lipid-lowering treatment at baseline (-1.14 mmol/l, n=34), or started treatment during the follow-up (-1.77 mmol/l, n=481) compared with untreated individuals (n=3954; p < 0.001); among those who improved their diet-especially the ratio of white to red meat consumption and the ratio of polyunsaturated to saturated fatty acids intake-(-0.07 mmol/l, n=717) compared with those with no change in diet (n=3071; p=0.03) and among those who increased physical activity (-0.10 mmol/l, n=601) compared with those with no change in physical activity (n=3312; p=0.005). Based on these estimates, successful implementation of lipid-lowering drug treatment for high-risk participants (n=858) and favourable changes in diet (n=3457) and physical activity (n=2190) among those with non-optimal lifestyles would reduce LDL-cholesterol by 0.90 to 1.07 mmol/l in the total cohort.Conclusions Both lipid-lowering pharmacotherapy and favourable changes in lifestyle independently reduced LDL-cholesterol levels in a cohort of middle-aged men and women, supporting the use of multifaceted intervention strategies for prevention

    Does overall diet in midlife predict future aging phenotypes? A cohort study

    Get PDF
    International audienceBACKGROUND: The impact of diet on specific age-related diseases has been studied extensively, but few investigations have adopted a more holistic approach to determine the association of diet with overall health at older ages. We examined whether diet, assessed in midlife, using dietary patterns and adherence to the Alternative Healthy Eating Index (AHEI), is associated with aging phenotypes, identified after a mean 16-year follow-up. METHODS: Data were drawn from the Whitehall II cohort study of 5350 adults (age 51.3±5.3 years, 29.4% women). Diet was assessed at baseline (1991-1993). Mortality, chronic diseases, and functioning were ascertained from hospital data, register linkage, and screenings every 5 years and were used to create 5 outcomes at follow-up: ideal aging (free of chronic conditions and high performance in physical, mental, and cognitive functioning tests; 4%), nonfatal cardiovascular event (7.3%), cardiovascular death (2.8%), noncardiovascular death (12.7%), and normal aging (73.2%). RESULTS: Low adherence to the AHEI was associated with an increased risk of cardiovascular and noncardiovascular death. In addition, participants with a "Western-type" diet (characterized by high intakes of fried and sweet food, processed food and red meat, refined grains, and high-fat dairy products) had lower odds of ideal aging (odds ratio for top vs bottom tertile: 0.58; 95% confidence interval, 0.36-0.94; P=.02), independently of other health behaviors. CONCLUSIONS: By considering healthy aging as a composite of cardiovascular, metabolic, musculoskeletal, respiratory, mental, and cognitive function, the present study offers a new perspective on the impact of diet on aging phenotypes

    Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe

    Get PDF
    Summary Background Although overweight and obesity have been studied in relation to individual cardiometabolic diseases, their association with risk of cardiometabolic multimorbidity is poorly understood. Here we aimed to establish the risk of incident cardiometabolic multimorbidity (ie, at least two from: type 2 diabetes, coronary heart disease, and stroke) in adults who are overweight and obese compared with those who are a healthy weight. Methods We pooled individual-participant data for BMI and incident cardiometabolic multimorbidity from 16 prospective cohort studies from the USA and Europe. Participants included in the analyses were 35 years or older and had data available for BMI at baseline and for type 2 diabetes, coronary heart disease, and stroke at baseline and follow-up. We excluded participants with a diagnosis of diabetes, coronary heart disease, or stroke at or before study baseline. According to WHO recommendations, we classified BMI into categories of healthy (20·0–24·9 kg/m2), overweight (25·0–29·9 kg/m2), class I (mild) obesity (30·0–34·9 kg/m2), and class II and III (severe) obesity (≄35·0 kg/m2). We used an inclusive definition of underweight (Peer reviewe

    Long working hours, socioeconomic status, and the risk of incident type 2 diabetes : a meta-analysis of published and unpublished data from 222 120 individuals

    Get PDF
    Background Working long hours might have adverse health effects, but whether this is true for all socioeconomic status groups is unclear. In this meta-analysis stratified by socioeconomic status, we investigated the role of long working hours as a risk factor for type 2 diabetes. Methods We identified four published studies through a systematic literature search of PubMed and Embase up to April 30, 2014. Study inclusion criteria were English-language publication; prospective design (cohort study); investigation of the effect of working hours or overtime work; incident diabetes as an outcome; and relative risks, odds ratios, or hazard ratios (HRs) with 95% CIs, or sufficient information to calculate these estimates. Additionally, we used unpublished individual-level data from 19 cohort studies from the Individual-Participant-Data Meta-analysis in Working-Populations Consortium and international open-access data archives. Effect estimates from published and unpublished data from 222 120 men and women from the USA, Europe, Japan, and Australia were pooled with random-effects meta-analysis. Findings During 1.7 million person-years at risk, 4963 individuals developed diabetes (incidence 29 per 10 000 person-years). The minimally adjusted summary risk ratio for long (>= 55 h per week) compared with standard working hours (35-40 h) was 1.07 (95% CI 0.89-1.27, difference in incidence three cases per 10 000 person-years) with significant heterogeneity in study-specific estimates (I-2 = 53%, p = 0.0016). In an analysis stratified by socioeconomic status, the association between long working hours and diabetes was evident in the low socioeconomic status group (risk ratio 1.29, 95% CI 1.06-1.57, difference in incidence 13 per 10 000 person-years, I-2 = 0%, p = 0.4662), but was null in the high socioeconomic status group (1. 00, 95% CI 0.80-1.25, incidence diff erence zero per 10 000 person-years, I-2 = 15%, p = 0.2464). The association in the low socioeconomic status group was robust to adjustment for age, sex, obesity, and physical activity, and remained after exclusion of shift workers. Interpretation In this meta-analysis, the link between longer working hours and type 2 diabetes was apparent only in individuals in the low socioeconomic status groups. Copyright (C) Kivimaki et al. Open Access article distributed under the terms of CC BY.Peer reviewe

    Overweight, obesity and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120,813 adults from 16 cohort studies from the USA and Europe

    Get PDF
    Background Although overweight and obesity have been studied in relation to individual cardiometabolic diseases, their association with risk of cardiometabolic multimorbidity is poorly understood. Here we aimed to establish the risk of incident cardiometabolic multimorbidity (ie, at least two from: type 2 diabetes, coronary heart disease, and stroke) in adults who are overweight and obese compared with those who are a healthy weight. Methods We pooled individual-participant data for BMI and incident cardiometabolic multimorbidity from 16 prospective cohort studies from the USA and Europe. Participants included in the analyses were 35 years or older and had data available for BMI at baseline and for type 2 diabetes, coronary heart disease, and stroke at baseline and follow-up. We excluded participants with a diagnosis of diabetes, coronary heart disease, or stroke at or before study baseline. According to WHO recommendations, we classified BMI into categories of healthy (20·0–24·9 kg/mÂČ), overweight (25·0–29·9 kg/mÂČ), class I (mild) obesity (30·0–34·9 kg/mÂČ), and class II and III (severe) obesity (≄35·0 kg/mÂČ). We used an inclusive definition of underweight (<20 kg/mÂČ) to achieve sufficient case numbers for analysis. The main outcome was cardiometabolic multimorbidity (ie, developing at least two from: type 2 diabetes, coronary heart disease, and stroke). Incident cardiometabolic multimorbidity was ascertained via resurvey or linkage to electronic medical records (including hospital admissions and death). We analysed data from each cohort separately using logistic regression and then pooled cohort-specific estimates using random-effects meta-analysis. Findings Participants were 120 813 adults (mean age 51·4 years, range 35–103; 71445 women) who did not have diabetes, coronary heart disease, or stroke at study baseline (1973–2012). During a mean follow-up of 10·7 years (1995–2014), we identified 1627 cases of multimorbidity. After adjustment for sociodemographic and lifestyle factors, compared with individuals with a healthy weight, the risk of developing cardiometabolic multimorbidity in overweight individuals was twice as high (odds ratio [OR] 2·0, 95% CI 1·7–2·4; p<0·0001), almost five times higher for individuals with class I obesity (4·5, 3·5–5·8; p<0·0001), and almost 15 times higher for individuals with classes II and III obesity combined (14·5, 10·1–21·0; p<0·0001). This association was noted in men and women, young and old, and white and non-white participants, and was not dependent on the method of exposure assessment or outcome ascertainment. In analyses of different combinations of cardiometabolic conditions, odds ratios associated with classes II and III obesity were 2·2 (95% CI 1·9–2·6) for vascular disease only (coronary heart disease or stroke), 12·0 (8·1–17·9) for vascular disease followed by diabetes, 18·6 (16·6–20·9) for diabetes only, and 29·8 (21·7–40·8) for diabetes followed by vascular disease. Interpretation The risk of cardiometabolic multimorbidity increases as BMI increases; from double in overweight people to more than ten times in severely obese people compared with individuals with a healthy BMI. Our findings highlight the need for clinicians to actively screen for diabetes in overweight and obese patients with vascular disease, and pay increased attention to prevention of vascular disease in obese individuals with diabetes

    Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe.

    Get PDF
    BACKGROUND:Although overweight and obesity have been studied in relation to individual cardiometabolic diseases, their association with risk of cardiometabolic multimorbidity is poorly understood. Here we aimed to establish the risk of incident cardiometabolic multimorbidity (ie, at least two from: type 2 diabetes, coronary heart disease, and stroke) in adults who are overweight and obese compared with those who are a healthy weight.METHODS:We pooled individual-participant data for BMI and incident cardiometabolic multimorbidity from 16 prospective cohort studies from the USA and Europe. Participants included in the analyses were 35 years or older and had data available for BMI at baseline and for type 2 diabetes, coronary heart disease, and stroke at baseline and follow-up. We excluded participants with a diagnosis of diabetes, coronary heart disease, or stroke at or before study baseline. According to WHO recommendations, we classified BMI into categories of healthy (20·0-24·9 kg/m2), overweight (25·0-29·9 kg/m2), class I (mild) obesity (30·0-34·9 kg/m2), and class II and III (severe) obesity (≄35·0 kg/m2). We used an inclusive definition of underweight (FINDINGS:Participants were 120  813 adults (mean age 51·4 years, range 35-103; 71 445 women) who did not have diabetes, coronary heart disease, or stroke at study baseline (1973-2012). During a mean follow-up of 10·7 years (1995-2014), we identified 1627 cases of multimorbidity. After adjustment for sociodemographic and lifestyle factors, compared with individuals with a healthy weight, the risk of developing cardiometabolic multimorbidity in overweight individuals was twice as high (odds ratio [OR] 2·0, 95% CI 1·7-2·4; pINTERPRETATION:The risk of cardiometabolic multimorbidity increases as BMI increases; from double in overweight people to more than ten times in severely obese people compared with individuals with a healthy BMI. Our findings highlight the need for clinicians to actively screen for diabetes in overweight and obese patients with vascular disease, and pay increased attention to prevention of vascular disease in obese individuals with diabetes.FUNDING:NordForsk, Medical Research Council, Cancer Research UK, Finnish Work Environment Fund, and Academy of Finland.</p

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Rest of authors: Decky Junaedi, Robert R. Junker, Eric Justes, Richard Kabzems, Jeffrey Kane, Zdenek Kaplan, Teja Kattenborn, Lyudmila Kavelenova, Elizabeth Kearsley, Anne Kempel, Tanaka Kenzo, Andrew Kerkhoff, Mohammed I. Khalil, Nicole L. Kinlock, Wilm Daniel Kissling, Kaoru Kitajima, Thomas Kitzberger, Rasmus KjĂžller, Tamir Klein, Michael Kleyer, Jitka KlimeĆĄovĂĄ, Joice Klipel, Brian Kloeppel, Stefan Klotz, Johannes M. H. Knops, Takashi Kohyama, Fumito Koike, Johannes Kollmann, Benjamin Komac, Kimberly Komatsu, Christian König, Nathan J. B. Kraft, Koen Kramer, Holger Kreft, Ingolf KĂŒhn, Dushan Kumarathunge, Jonas Kuppler, Hiroko Kurokawa, Yoko Kurosawa, Shem Kuyah, Jean-Paul Laclau, Benoit Lafleur, Erik Lallai, Eric Lamb, Andrea Lamprecht, Daniel J. Larkin, Daniel Laughlin, Yoann Le Bagousse-Pinguet, Guerric le Maire, Peter C. le Roux, Elizabeth le Roux, Tali Lee, Frederic Lens, Simon L. Lewis, Barbara Lhotsky, Yuanzhi Li, Xine Li, Jeremy W. Lichstein, Mario Liebergesell, Jun Ying Lim, Yan-Shih Lin, Juan Carlos Linares, Chunjiang Liu, Daijun Liu, Udayangani Liu, Stuart Livingstone, Joan LlusiĂ , Madelon Lohbeck, Álvaro LĂłpez-GarcĂ­a, Gabriela Lopez-Gonzalez, Zdeƈka LososovĂĄ, FrĂ©dĂ©rique Louault, BalĂĄzs A. LukĂĄcs, Petr LukeĆĄ, Yunjian Luo, Michele Lussu, Siyan Ma, Camilla Maciel Rabelo Pereira, Michelle Mack, Vincent Maire, Annikki MĂ€kelĂ€, Harri MĂ€kinen, Ana Claudia Mendes Malhado, Azim Mallik, Peter Manning, Stefano Manzoni, Zuleica Marchetti, Luca Marchino, Vinicius Marcilio-Silva, Eric Marcon, Michela Marignani, Lars Markesteijn, Adam Martin, Cristina MartĂ­nez-Garza, Jordi MartĂ­nez-Vilalta, Tereza MaĆĄkovĂĄ, Kelly Mason, Norman Mason, Tara Joy Massad, Jacynthe Masse, Itay Mayrose, James McCarthy, M. Luke McCormack, Katherine McCulloh, Ian R. McFadden, Brian J. McGill, Mara Y. McPartland, Juliana S. Medeiros, Belinda Medlyn, Pierre Meerts, Zia Mehrabi, Patrick Meir, Felipe P. L. Melo, Maurizio Mencuccini, CĂ©line Meredieu, Julie Messier, Ilona MĂ©szĂĄros, Juha Metsaranta, Sean T. Michaletz, Chrysanthi Michelaki, Svetlana Migalina, Ruben Milla, Jesse E. D. Miller, Vanessa Minden, Ray Ming, Karel Mokany, Angela T. Moles, Attila MolnĂĄr V, Jane Molofsky, Martin Molz, Rebecca A. Montgomery, Arnaud Monty, Lenka MoravcovĂĄ, Alvaro Moreno-MartĂ­nez, Marco Moretti, Akira S. Mori, Shigeta Mori, Dave Morris, Jane Morrison, Ladislav Mucina, Sandra Mueller, Christopher D. Muir, Sandra Cristina MĂŒller, François Munoz, Isla H. Myers-Smith, Randall W. Myster, Masahiro Nagano, Shawna Naidu, Ayyappan Narayanan, Balachandran Natesan, Luka Negoita, Andrew S. Nelson, Eike Lena Neuschulz, Jian Ni, Georg Niedrist, Jhon Nieto, Ülo Niinemets, Rachael Nolan, Henning Nottebrock, Yann Nouvellon, Alexander Novakovskiy, The Nutrient Network, Kristin Odden Nystuen, Anthony O'Grady, Kevin O'Hara, Andrew O'Reilly-Nugent, Simon Oakley, Walter Oberhuber, Toshiyuki Ohtsuka, Ricardo Oliveira, Kinga Öllerer, Mark E. Olson, Vladimir Onipchenko, Yusuke Onoda, Renske E. Onstein, Jenny C. Ordonez, Noriyuki Osada, Ivika Ostonen, Gianluigi Ottaviani, Sarah Otto, Gerhard E. Overbeck, Wim A. Ozinga, Anna T. Pahl, C. E. Timothy Paine, Robin J. Pakeman, Aristotelis C. Papageorgiou, Evgeniya Parfionova, Meelis PĂ€rtel, Marco Patacca, Susana Paula, Juraj Paule, Harald Pauli, Juli G. Pausas, Begoña Peco, Josep Penuelas, Antonio Perea, Pablo Luis Peri, Ana Carolina Petisco-Souza, Alessandro Petraglia, Any Mary Petritan, Oliver L. Phillips, Simon Pierce, ValĂ©rio D. Pillar, Jan Pisek, Alexandr Pomogaybin, Hendrik Poorter, Angelika Portsmuth, Peter Poschlod, Catherine Potvin, Devon Pounds, A. Shafer Powell, Sally A. Power, Andreas Prinzing, Giacomo Puglielli, Petr PyĆĄek, Valerie Raevel, Anja Rammig, Johannes Ransijn, Courtenay A. Ray, Peter B. Reich, Markus Reichstein, Douglas E. B. Reid, Maxime RĂ©jou-MĂ©chain, Victor Resco de Dios, Sabina Ribeiro, Sarah Richardson, Kersti Riibak, Matthias C. Rillig, Fiamma Riviera, Elisabeth M. R. Robert, Scott Roberts, Bjorn Robroek, Adam Roddy, Arthur Vinicius Rodrigues, Alistair Rogers, Emily Rollinson, Victor Rolo, Christine Römermann, Dina Ronzhina, Christiane Roscher, Julieta A. Rosell, Milena Fermina Rosenfield, Christian Rossi, David B. Roy, Samuel Royer-Tardif, Nadja RĂŒger, Ricardo Ruiz-Peinado, Sabine B. Rumpf, Graciela M. Rusch, Masahiro Ryo, Lawren Sack, Angela Saldaña, Beatriz Salgado-Negret, Roberto Salguero-Gomez, Ignacio Santa-Regina, Ana Carolina Santacruz-GarcĂ­a, Joaquim Santos, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Matthias Schleuning, Bernhard Schmid, Marco Schmidt, Sylvain Schmitt, Julio V. Schneider, Simon D. Schowanek, Julian Schrader, Franziska Schrodt, Bernhard Schuldt, Frank Schurr, Galia Selaya Garvizu, Marina Semchenko, Colleen Seymour, Julia C. Sfair, Joanne M. Sharpe, Christine S. Sheppard, Serge Sheremetiev, Satomi Shiodera, Bill Shipley, Tanvir Ahmed Shovon, Alrun SiebenkĂ€s, Carlos Sierra, Vasco Silva, Mateus Silva, Tommaso Sitzia, Henrik Sjöman, Martijn Slot, Nicholas G. Smith, Darwin Sodhi, Pamela Soltis, Douglas Soltis, Ben Somers, GrĂ©gory Sonnier, Mia Vedel SĂžrensen, Enio Egon Sosinski Jr, Nadejda A. Soudzilovskaia, Alexandre F. Souza, Marko Spasojevic, Marta Gaia Sperandii, Amanda B. Stan, James Stegen, Klaus Steinbauer, Jörg G. Stephan, Frank Sterck, Dejan B. Stojanovic, Tanya Strydom, Maria Laura Suarez, Jens-Christian Svenning, Ivana SvitkovĂĄ, Marek Svitok, Miroslav Svoboda, Emily Swaine, Nathan Swenson, Marcelo Tabarelli, Kentaro Takagi, Ulrike Tappeiner, RubĂ©n Tarifa, Simon Tauugourdeau, Cagatay Tavsanoglu, Mariska te Beest, Leho Tedersoo, Nelson Thiffault, Dominik Thom, Evert Thomas, Ken Thompson, Peter E. Thornton, Wilfried Thuiller, LubomĂ­r TichĂœ, David Tissue, Mark G. Tjoelker, David Yue Phin Tng, Joseph Tobias, PĂ©ter Török, Tonantzin Tarin, JosĂ© M. Torres-Ruiz, BĂ©la TĂłthmĂ©rĂ©sz, Martina Treurnicht, Valeria Trivellone, Franck Trolliet, Volodymyr Trotsiuk, James L. Tsakalos, Ioannis Tsiripidis, Niklas Tysklind, Toru Umehara, Vladimir Usoltsev, Matthew Vadeboncoeur, Jamil Vaezi, Fernando Valladares, Jana Vamosi, Peter M. van Bodegom, Michiel van Breugel, Elisa Van Cleemput, Martine van de Weg, Stephni van der Merwe, Fons van der Plas, Masha T. van der Sande, Mark van Kleunen, Koenraad Van Meerbeek, Mark Vanderwel, Kim AndrĂ© Vanselow, Angelica VĂ„rhammar, Laura Varone, Maribel Yesenia Vasquez Valderrama, Kiril Vassilev, Mark Vellend, Erik J. Veneklaas, Hans Verbeeck, Kris Verheyen, Alexander Vibrans, Ima Vieira, Jaime VillacĂ­s, Cyrille Violle, Pandi Vivek, Katrin Wagner, Matthew Waldram, Anthony Waldron, Anthony P. Walker, Martyn Waller, Gabriel Walther, Han Wang, Feng Wang, Weiqi Wang, Harry Watkins, James Watkins, Ulrich Weber, James T. Weedon, Liping Wei, Patrick Weigelt, Evan Weiher, Aidan W. Wells, Camilla Wellstein, Elizabeth Wenk, Mark Westoby, Alana Westwood, Philip John White, Mark Whitten, Mathew Williams, Daniel E. Winkler, Klaus Winter, Chevonne Womack, Ian J. Wright, S. Joseph Wright, Justin Wright, Bruno X. Pinho, Fabiano Ximenes, Toshihiro Yamada, Keiko Yamaji, Ruth Yanai, Nikolay Yankov, Benjamin Yguel, KĂĄtia Janaina Zanini, Amy E. Zanne, David ZelenĂœ, Yun-Peng Zhao, Jingming Zheng, Ji Zheng, Kasia ZiemiƄska, Chad R. Zirbel, Georg Zizka, IriĂ© Casimir Zo-Bi, Gerhard Zotz, Christian Wirth.Max Planck Institute for Biogeochemistry; Max Planck Society; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; International Programme of Biodiversity Science (DIVERSITAS); International Geosphere-Biosphere Programme (IGBP); Future Earth; French Foundation for Biodiversity Research (FRB); GIS ‘Climat, Environnement et SociĂ©tĂ©'.http://wileyonlinelibrary.com/journal/gcbhj2021Plant Production and Soil Scienc

    Forests: An International and Multi-disciplinary Scientific Open Access Journal

    No full text
    Natural and man-made forests serve many facets of society, including the production and consumption of forest products, provision of various environmental services such as clean air and water, soil protection, sources for critical endangered species habitats, and home for about 80% of the world’s terrestrial biodiversity. Throughout the world, forests are essential for offsetting poverty by contributing to the livelihood of the poor, and providing a foundation for the sustainable economic development of many countries. [...

    A Flexible Hybrid Model of Life Cycle Carbon Balance for Loblolly Pine (Pinus taeda L.) Management Systems

    No full text
    In this study we analyzed the effects of silvicultural treatments on carbon (C) budgets in Pinus taeda L. (loblolly pine) plantations in the southeastern United States. We developed a hybrid model that integrated a widely used growth and yield model for loblolly pine with published allometric and biometric equations to simulate in situ C pools. The model used current values of forest product conversion efficiencies and forest product decay rates to calculate ex situ C pools. Using the model to evaluate the effects of silvicultural management systems on C sequestration over a 200 year simulation period, we concluded that site productivity (site quality), which can be altered by silviculture and genetic improvement, was the major factor controlling stand C density. On low productivity sites, average net C stocks were about 35% lower than in stands with the default average site quality; in contrast, on high quality sites, C stocks were about 38% greater than average productivity stands. If woody products were incorporated into the accounting, thinning was C positive because of the larger positive effects on ex situ C storage, rather than smaller reductions on in situ C storage. The use of biological rotation age (18 years) was not suitable for C sequestration, and extended rotation ages were found to increase stand C stock density. Stands with an 18-year-rotation length had 7% lower net C density than stands with a 22-year-rotation length; stands with a 35-year-rotation length had only 4% more C than stands harvested at age 22 years. The C sequestered in woody products was an important pool of C storage, accounting for ~34% of the average net C stock. Changes in decomposition rate, associated with possible environmental changes resulting from global climate change, affected C storage capacity of the forest. When decay rate was reduced to 10% or increased to 20%, the C stock in the dead pool (forest floor and coarse woody debris) was reduced about 11.8 MgC∙ha−1 or increased about 13.3 MgC∙ha−1, respectively, compared to the average decay rate of 15%. The C emissions due to silvicultural and harvest activities were small (~1.6% of the gross C stock) compared to the magnitude of total stand C stock. The C model, based on empirical and biological relationships, appears appropriate for use in regional C stock assessments for loblolly pine plantation ecosystems in the southern U.S
    corecore