1,146 research outputs found
The influence of dynamic environmental interactions on detection efficiency of acoustic transmitters in a large, deep, freshwater lake
Background: Acoustic telemetry is an increasingly common method used to address ecological questions about the movement, behaviour, and survival of freshwater and marine organisms. The variable performance of acoustic telemetry equipment and ability of receivers to detect signals from transmitters have been well studied in marine and coral reef environments to inform study design and improve data interpretation. Despite the growing use of acoustic telemetry in large, deep, freshwater systems, detection efficiency and range, particularly in relation to environmental variation, are poorly understood. We used an array of 90 69-kHz acoustic receivers and 8 sentinel range transmitters of varying power output deployed at different depths and locations approximately 100-9500 m apart for 215 days to evaluate how the detection efficiency of acoustic receivers varied spatially and temporally in relation to environmental conditions. Results: The maximum distance that tags were detected ranged from 5.9 to 9.3 km. Shallow tags consistently had lower detection efficiency than deep tags of the same power output and detection efficiency declined through the winter months (December-February) of the study. In addition to the distance between tag and receiver, thermocline strength, surface water velocity, ice thickness, water temperature, depth range between tag and receiver, and number of fish detections contributed to explaining variation in detection efficiency throughout the study period. Furthermore, the most significant models incorporated interactions between several environmental variables and tag-receiver distance, demonstrating the complex temporal and spatial relationships that exist in heterogeneous environments. Conclusions: Relying on individual environmental variables in isolation to interpret receiver performance, and thus animal behaviour, may be erroneous when detection efficiency varies across distances, depths, or tag types. As acoustic telemetry becomes more widely used to study ecology and inform management, it is crucial to understand its limitations in heterogeneous environments, such as freshwater lakes, to improve the quality and interpretation of data. We recommend that in situ range testing and retrospective analysis of detection efficiency be incorporated into study design for telemetry projects. Furthermore, we caution against oversimplifying the dynamic relationship between detection efficiency and environmental conditions for the sake of producing a correction that can be applied directly to detection data of tagged animals when the intended correction may not be justified
Motor subtype as a predictor of future working memory performance in idiopathic Parkinson\u27s disease
Parkinson’s disease is a progressive neurodegenerative disorder associated with reduced spatial and verbal working memory ability. There are two established motor subtypes of PD, tremor dominant (TD) and postural instability and gait difficulty (PIGD). This study used structural equation modelling to explore the longitudinal relationship between the two subtypes and working memory assessed at a 2-year follow-up. The study comprised 84 males and 30 females (N = 114), aged between 39 and 85 (M = 64.82, SD = 9.23) with confirmed PD. There was no significant relationship between motor subtype at Time 1 and working memory at Time 2. Postural symptom severity at Time 1 predicted Time 2 spatial working memory for the PIGD subtype (p = .011) but not the TD subtype. Tremor symptoms were not associated with Time 2 working memory in either subtype. Predictive significance of Time 1 postural symptoms only in the PIGD subtype suggests an interaction between symptom dominance (subtype) and symptom severity that future subtyping should consider. This study demonstrates a predictive relationship between postural difficulties and working memory performance assessed at a 2-year follow-up. Establishing physical symptoms as predictors of cognitive change could have significant clinical importance
Raw diffraction data and reproducibility
In recent years, there has been a major expansion in digital storage capability for hosting raw diffraction datasets. Naturally, the question has now arisen as to the benefits and costs for the preservation of such raw, i.e., experimental diffraction datasets. We describe the consultations made of the global structural chemistry, i.e., chemical crystallography community from the points of view of the International Union of Crystallography (IUCr) Committee on Data, of which JRH was the Chair until very recently, and the IUCrData Raw Data Letters initiative, for which LKB is the Main Editor. The monitoring by the CCDC of CSD depositions which cite the digital object identifiers of raw diffraction datasets provides interesting statistics by probe (x-ray, neutron, or electron) and by home lab vs central facility. Clearly, a better understanding of the reproducibility of current analysis procedures is at hand. Policies for publication requiring raw data have been updated in IUCr Journals for macromolecular crystallography, namely, that raw data should be made available for a new crystal structure or a new method as well as the wwPDB deposition. For chemical crystallography, such a step requiring raw data archiving has not yet been recommended by the IUCr Commission on Structural Chemistry
Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences
A carbon budget for the northwest European continental shelf seas (NWES) was synthesized using available estimates for coastal, pelagic and benthic carbon stocks and flows. Key uncertainties were identified and the effect of future impacts on the carbon budget were assessed. The water of the shelf seas contains between 210 and 230 Tmol of carbon and absorbs between 1.3 and 3.3 Tmol from the atmosphere annually. Off-shelf transport and burial in the sediments account for 60–100 and 0–40% of carbon outputs from the NWES, respectively. Both of these fluxes remain poorly constrained by observations and resolving their magnitudes and relative importance is a key research priority. Pelagic and benthic carbon stocks are dominated by inorganic carbon. Shelf sediments contain the largest stock of carbon, with between 520 and 1600 Tmol stored in the top 0.1 m of the sea bed. Coastal habitats such as salt marshes and mud flats contain large amounts of carbon per unit area but their total carbon stocks are small compared to pelagic and benthic stocks due to their smaller spatial extent. The large pelagic stock of carbon will continue to increase due to the rising concentration of atmospheric CO2, with associated pH decrease. Pelagic carbon stocks and flows are also likely to be significantly affected by increasing acidity and temperature, and circulation changes but the net impact is uncertain. Benthic carbon stocks will be affected by increasing temperature and acidity, and decreasing oxygen concentrations, although the net impact of these interrelated changes on carbon stocks is uncertain and a major knowledge gap. The impact of bottom trawling on benthic carbon stocks is unique amongst the impacts we consider in that it is widespread and also directly manageable, although its net effect on the carbon budget is uncertain. Coastal habitats are vulnerable to sea level rise and are strongly impacted by management decisions. Local, national and regional actions have the potential to protect or enhance carbon storage, but ultimately global governance, via controls on emissions, has the greatest potential to influence the long-term fate of carbon stocks in the northwestern European continental shelf
Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b
We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a
transiting planet identified by the NASA Kepler Mission. Kepler photometry and
Keck-HIRES radial velocities yield the radius and mass of the planet around
this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass,
MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density
planets known. The orbital period is P = 3.523 days and orbital semima jor axis
is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5
+/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties
deleterious to precise Doppler measurements. The velocities are indeed noisy,
with scatter of 30 m s^-1, but exhibit a period and phase consistent with the
planet implied by the photometry. We securely detect the Rossiter-McLaughlin
effect, confirming the planet's existence and establishing its orbit as
prograde. We measure an inclination between the projected planetary orbital
axis and the projected stellar rotation axis of lambda = -26.9 +/- 4.6 deg,
indicating a moderate inclination of the planetary orbit. Rossiter-McLaughlin
measurements of a large sample of transiting planets from Kepler will provide a
statistically robust measure of the true distribution of spin-orbit
orientations for hot jupiters in general.Comment: 26 pages, 8 figures, 2 tables; In preparation for submission to the
Astrophysical Journa
Recommended from our members
The Role of Short-Termism and Uncertainty Avoidance in Organizational Inaction on Climate Change: A Multi-Level Framework
Despite increasing pressure to deal with climate change, firms have been slow to respond with effective action. This article presents a multi-level framework for a better understanding of why many firms are failing to reduce their absolute greenhouse gas emissions, which contribute to climate change. The concepts of short-termism and uncertainty avoidance from research in psychology, sociology, and organization theory can explain the phenomenon of organizational inaction on climate change. Antecedents related to short-termism and uncertainty avoidance reinforce one another at three levels—individual, organizational, and institutional—and result in organizational inaction on climate change. The article also discusses the implications of this multi-level framework for research on corporate sustainability
Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio
Characteristics of Kepler Planetary Candidates Based on the First Data Set: The Majority are Found to be Neptune-Size and Smaller
In the spring of 2009, the Kepler Mission commenced high-precision photometry
on nearly 156,000 stars to determine the frequency and characteristics of small
exoplanets, conduct a guest observer program, and obtain asteroseismic data on
a wide variety of stars. On 15 June 2010 the Kepler Mission released data from
the first quarter of observations. At the time of this publication, 706 stars
from this first data set have exoplanet candidates with sizes from as small as
that of the Earth to larger than that of Jupiter. Here we give the identity and
characteristics of 306 released stars with planetary candidates. Data for the
remaining 400 stars with planetary candidates will be released in February
2011. Over half the candidates on the released list have radii less than half
that of Jupiter. The released stars include five possible multi-planet systems.
One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with
near-resonant periods.Comment: Paper to accompany Kepler's June 15, 2010 data release; submitted to
Astrophysical Journal Figures 1,2,& 3 revised. Improved labeling on all
figures. Slight changes to planet frequencies in result
- …