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The influence of dynamic environmental 
interactions on detection efficiency of acoustic 
transmitters in a large, deep, freshwater lake
Natalie V. Klinard1*  , Edmund A. Halfyard2, Jordan K. Matley1, Aaron T. Fisk1 and Timothy B. Johnson3

Abstract 

Background:  Acoustic telemetry is an increasingly common method used to address ecological questions about 
the movement, behaviour, and survival of freshwater and marine organisms. The variable performance of acoustic 
telemetry equipment and ability of receivers to detect signals from transmitters have been well studied in marine and 
coral reef environments to inform study design and improve data interpretation. Despite the growing use of acoustic 
telemetry in large, deep, freshwater systems, detection efficiency and range, particularly in relation to environmental 
variation, are poorly understood. We used an array of 90 69-kHz acoustic receivers and 8 sentinel range transmitters 
of varying power output deployed at different depths and locations approximately 100–9500 m apart for 215 days to 
evaluate how the detection efficiency of acoustic receivers varied spatially and temporally in relation to environmen-
tal conditions.

Results:  The maximum distance that tags were detected ranged from 5.9 to 9.3 km. Shallow tags consistently had 
lower detection efficiency than deep tags of the same power output and detection efficiency declined through the 
winter months (December–February) of the study. In addition to the distance between tag and receiver, thermo-
cline strength, surface water velocity, ice thickness, water temperature, depth range between tag and receiver, and 
number of fish detections contributed to explaining variation in detection efficiency throughout the study period. 
Furthermore, the most significant models incorporated interactions between several environmental variables and 
tag–receiver distance, demonstrating the complex temporal and spatial relationships that exist in heterogeneous 
environments.

Conclusions:  Relying on individual environmental variables in isolation to interpret receiver performance, and thus 
animal behaviour, may be erroneous when detection efficiency varies across distances, depths, or tag types. As acous-
tic telemetry becomes more widely used to study ecology and inform management, it is crucial to understand its limi-
tations in heterogeneous environments, such as freshwater lakes, to improve the quality and interpretation of data. 
We recommend that in situ range testing and retrospective analysis of detection efficiency be incorporated into study 
design for telemetry projects. Furthermore, we caution against oversimplifying the dynamic relationship between 
detection efficiency and environmental conditions for the sake of producing a correction that can be applied directly 
to detection data of tagged animals when the intended correction may not be justified.

Keywords:  Acoustic telemetry, Detection efficiency, Detection range, Great Lakes, Passive monitoring, Range testing
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Background
Acoustic telemetry is a valuable tool that is used to inves-
tigate the movement and behaviour of aquatic organisms. 
The ability to passively track the movement of tagged 
individuals on fine spatial and temporal scales has played 
an important role in the research of aquatic ecosystems 
and informing fisheries management and conservation 
strategies [1–3]. Recent advances in acoustic telemetry 
[4, 5], such as the miniaturization of transmitters and 
increased tag life, have enabled scientists to address ques-
tions about the fundamental ecology of aquatic organ-
isms that were previously unattainable including their 
distributions, survival, spawning, habitat use, and trophic 
interactions [1, 6, 7].

Passive acoustic telemetry requires an acoustic trans-
mitter (hereafter tag) that emits ultrasonic sounds (pings) 
at certain intervals to be detected, decoded, and recorded 
by a submerged acoustic hydrophone and receiver (here-
after receiver) at a fixed location [8]. When the receiver 
successfully detects and decodes a transmitted sequence 
of pings (hereafter detection), the time, tag ID, and 
any additional sensor measurements, such as pressure 
(depth) or temperature, associated with the detection are 
recorded.

Detection efficiency (DE) is defined as the probabil-
ity of successfully detecting a single transmission of a 
tag, whereas detection range (DR) refers to the distance 
from a receiver that a transmission is estimated to be 
detected given a specific DE [9]. DE depends primarily 
on the distance between the tag and receiver at the time 
of signal transmission due to the geometric spreading of 
the wavefront through water, but there is a suite of biotic 
and abiotic factors that also influence the rate of energy 
attenuation and absorption of sound as the signal trav-
els through water [9, 10]. It is important to comprehend 
the relationship between DE and different factors in a 
telemetry study to understand the quality of information 
obtained, enable more accurate interpretation of telem-
etry data, and ultimately, to make stronger inferences 
about the ecology of the study organisms. For example, 
Payne et  al. [11] demonstrated that variation in DE of 
tagged cuttlefish (Sepia apama) created the appearance 
of diel activity patterns that were not necessarily present.

Some variables that influence the strength of a signal 
as it approaches a receiver may be controlled through 
study design [12, 13], such as acoustic tag power output, 
transmission interval, receiver orientation, and receiver 
depth. However, there are many other factors associ-
ated with environmental conditions or animal behaviour 
that are difficult to control for [14]. Factors affecting DE 
may remain relatively constant throughout the duration 
of a study, such as the refraction and reflection of signals 
caused by bathymetry and submerged structures, or the 

dissolved particle concentration of marine versus fresh-
water environments. Factors that may be more likely to 
change temporally include turbidity, air entrainment, 
algal blooms, ice cover, wind, water flow, waves, precipi-
tation, water temperature, and water column stratifica-
tion [15, 16]. In addition, environmental noise can be 
caused by external human influence (e.g., boat motors; 
[8]) or biological components of the environment (e.g., 
shrimp; [8]) and may interfere with receipt of the trans-
mission pings that make up a detection [17]. Further-
more, a high density of tags within the DR of a receiver 
can result in transmissions from multiple acoustic tags 
arriving at the receiver at approximately the same time 
and causing a collision of signals, preventing one or more 
tags from being decoded or creating a false detection 
sequence [18].

DE and DR within a receiver array are unique for each 
study and should be evaluated prior to the start of an 
acoustic telemetry project to help inform study design. 
The most common technique employed to quantify DE 
is static range testing, which uses acoustic tags deployed 
at fixed distances (i.e., sentinel tags) from a receiver [10]. 
Static range testing is often performed for long dura-
tions (e.g., weeks, months) to capture temporal scales 
relevant to the study objectives and evaluate the impacts 
of varying environmental conditions [19]. Mobile range 
testing is used less frequently and is performed by tow-
ing an acoustic tag near one or more receivers to evaluate 
DE and DR at a specific time and environmental condi-
tion [20]. Mobile range testing is less comprehensive and 
may be misleading depending on the environmental con-
ditions, boat motor noise, time of day, and depth of tag 
[19]. Nevertheless, the most effective method of range 
testing varies by study and ultimately depends on the 
objectives, environment, and characteristics of the study 
animals.

As acoustic telemetry has become an increasingly 
popular method to track aquatic animals in the past 
three decades, studies evaluating DE and DR have simi-
larly become more prevalent to accompany this growth 
[19]. DR has been examined across vast spatial scales in 
a variety of environments [19] revealing that the effect an 
environmental variable has on DE can often be unique to 
that location [20, 21]. Furthermore, certain types of envi-
ronments (e.g., river, lake, sea) often experience a specific 
range of variation of environmental variables (e.g., rivers 
often exhibit higher flow rates than lakes). How and de 
Lestang [22] and Cagua et al. [23] found that water tem-
perature had a significant negative relationship with DE 
on reefs in south-western Australia and Saudi Arabia, 
respectively, while Simpfendorfer et  al. [14] and Heupel 
et al. [24] found no significant effect of water temperature 
on DE in a Florida river and lagoon. Similarly, different 
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studies reported a significant positive relationship [23], 
significant negative relationship [25], and no significant 
relationship [26, 27] between DE and wind speed. While 
several studies have evaluated the impact of individual 
environmental variables on DE [20, 28], few studies have 
considered the interactions between them and how these 
relationships may change spatially [23]. Since DE is ulti-
mately a function of distance and a combination of envi-
ronmental variables, it is valuable to understand not only 
the temporal variability in DE caused by environmental 
conditions, but also how spatial variation impacts this 
relationship as well.

The majority of range test studies occur in marine envi-
ronments with a focus on reef ecosystems despite the 
increasing prevalence of acoustic telemetry in freshwater 
systems. The Laurentian Great Lakes is the world’s largest 
freshwater system and hosts numerous acoustic telem-
etry projects under the Great Lakes Acoustic Telem-
etry Observation System (GLATOS, https​://glato​s.glos.
us) with over 76 projects, 44 species and 11,500 tagged 
fishes and more than 285 million detections as of Febru-
ary 2019. However, there are few DE and DR studies in 
the Great Lakes to support the vast assortment of telem-
etry projects [10]. Further, acoustic telemetry studies in 
temperate or northern freshwater lakes also encounter 
seasonal thermal stratification and winter ice cover. The 
effect of these abiotic conditions on acoustic gear perfor-
mance is poorly understood.

In this study, we aimed to address knowledge gaps in 
acoustic telemetry literature by utilizing an extensive 
telemetry dataset from a large, deep, freshwater lake to 
answer questions about the relationship between DE 
and the environment through time and space. We exam-
ined spatial and temporal variability in the DE and DR 
of three acoustic tag types over a 7-month period (Oct. 
2015–May 2016) in Lake Ontario, the 10th largest lake by 
volume in the world. We chose to analyze DE and DR in 
Lake Ontario because of its wide range of depths, vari-
able habitats, seasonal fluctuations (e.g., thermal strati-
fication, ice cover), and the availability of an extensive 
telemetry receiver array. Our specific objectives were: 
(1) to determine DR in Lake Ontario for three types of 
acoustic tags, (2) to examine spatial and temporal varia-
bility in DE across tags of different power output, and (3) 
to assess the relationship between DE and environmental 
variables and evaluate the relative impact of interactions 
between distance and environmental variables on DE.

Methods
Study site
The telemetry study was performed in the St. Lawrence 
Channel of eastern Lake Ontario (43° 55.517′ N, 76° 
31.354′ W) from August 2015 to May 2016 (Fig. 1). The 

St. Lawrence Channel is a deep underwater valley located 
near the Canada–USA border that extends 24  km to 
form a major connection between Lake Ontario and the 
St. Lawrence River. This bathymetric feature is approxi-
mately 4  km wide, reaching depths of 50–60  m in the 
center of the valley and bordered by shallow water reefs 
less than 20-m deep on either side. In August 2015, five 
acoustic receivers (69-kHz VR2W; Vemco Ltd., Bedford, 
NS, Canada) were deployed at a depth of approximately 
55 m (instrument depth ~ 52 m) and spaced 100–150 m 
apart to create a range of different distances between the 
tags and receivers at which to measure DE (Figs. 1, 2). A 
total of 8 acoustic tags (Vemco Ltd., Bedford, NS, Can-
ada) were also deployed in four groups at different dis-
tances and two depths (shallow and deep) in the center 
of the study site (Fig.  2; Table  1). These included three 
V9-2x 69-kHz range tags (power output 145 dB, nominal 
delay 1800 s, random interval 1750–1850 s), one V13-1X 
69-kHz range tag (power output 153  dB, nominal delay 
1800 s), and four V16-6X 69-kHz range tags (power out-
put 158 dB, nominal delay 1800 s) to test DE and DR for 
tags of varying power and battery life. All tags had an 
estimated battery life of > 400 days. The tag types in this 
study were selected based on several ongoing acoustic 
telemetry studies in Lake Ontario that utilize each of the 
three tag types. The first group of tags (one V9, one V16) 
and the second group of tags (one V16) were deployed on 
tag moorings that consisted of a cinder block (~ 16  kg) 
anchor connected to a 28-cm trawl float by a 3-m length 
of 1.1-mm polypropylene rope (Fig.  2). Both groups of 
tags were deployed at depth and attached ~ 2 m from bot-
tom. The third and fourth groups of tags were deployed 
attached to a receiver mooring that featured a length of 
rope with a buoy extending to 10  m below the surface 
that was outfitted with HOBO Pendant loggers (Onset, 
Cape Cod, MA, USA)  to track changes in water tem-
perature at various depths in the water column. The deep 
group of tags (one V9, one V13, oneV16) was situated 
below the thermocline at a depth of 50 m, while the shal-
low group (one V9, one V16) was above the thermocline 
at a depth of 11 m to evaluate the impact of tag depth and 
thermal stratification on DE (Fig. 2).  

An array of 85 acoustic receivers (69-kHz VR2W) was 
deployed in October 2015 as part of a project to track the 
movements of tagged bloater (Coregonus hoyi) in Lake 
Ontario (Fig.  1). The acoustic receivers in this receiver 
array were utilized in addition to the initial five receiv-
ers in the range test study to record detections of senti-
nel range tags throughout the study period. The receiver 
moorings were composed of concrete cylinders (~ 62 kg) 
as the anchors connected to two 28-cm trawl floats by 
a 3-m length of 1.1-mm polypropylene rope with inline 
nylon swivels. Receivers were attached midway along the 

https://glatos.glos.us
https://glatos.glos.us
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rope with the hydrophone pointing upwards to be sus-
pended ~ 2  m above the lake bottom. An approximately 
30-m weighted rope was attached to the concrete anchor 
at one end and a cinder block at the other end to serve 
as a drag line for grappling when retrieving the receivers 
for download. Receivers deployed for the duration of the 
study were all situated below the thermocline. All range 
tags were removed from the system in May 2016.

Data analysis
The complete receiver array, including the 85 receivers 
from the bloater telemetry project and the five receivers 
for range testing, was deployed from 22  October, 2015 
to 23 May, 2016 (215 days). To ensure consistency across 
detection distances and probabilities, only detections for 
these dates were used in analyses. To verify that DE was 
not unduly biased by external factors affecting the per-
formance of acoustic receivers, we evaluated receiver 
performance in relation to noise levels and sources fol-
lowing methods described by Simpfendorfer et  al. [14]. 
Noise levels were determined by calculating a metric that 
estimates the amount and source of noise by comparing 
the expected number of pings based on synchronization 

intervals in the receiver’s metadata to the actual number 
of pings recorded by the receiver. Briefly, ambient noise 
resulting from the environment and tag collisions from 
the presence of tagged fish was unlikely to have signifi-
cantly impacted receiver performance or influenced DE 
measures (see Additional file 1).

Spatial variability in detection efficiency
To examine spatial variability in DE across tag types and 
depths, detection data were separated into five catego-
ries: deep V9, shallow V9, deep V13, deep V16, and shal-
low V16, where deep refers to tags at ~ 50-m depth and 
shallow refers to tags at ~ 11-m depth. Analyses were per-
formed separately for each tag category. For each tag and 
receiver combination (n = 720), DE was calculated for 
each day of deployment by dividing the number of detec-
tions by the expected number of transmissions per day 
(48 for a nominal transmission interval of 1800 s). Daily 
DE was used to estimate DE for the entire study period 
using generalized additive mixed models (GAMMs) to 
explain the DE as a function of the two-dimensional dis-
tance between tags and receivers. GAMMs use non-para-
metric smoothing functions to describe nonlinear trends 

Fig. 1  Bathymetry and location of the tag and receiver moorings in northeastern Lake Ontario. Red circle in map inset signifies location of study 
site within the Laurentian Great Lakes. See Fig. 2 for fine-scale tag locations
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Fig. 2  Design of tag and receiver moorings deployed in the center of the Lake Ontario receiver array. Tags represent the four groups of tag 
deployments consisting of V9 (green), V13 (yellow), and V16 (purple) tags. See Fig. 1 for locations

Table 1  Summary of  detections for  sentinel range tags deployed in  northeastern Lake Ontario from  22 October, 2015 
to 23 May, 2016 (215 days)

Detections·day−1 represents the average number of detections per day across all 75 unique receivers that tags were detected on (mean ± standard deviation), 
whereas detections·day−1·receiver−1 represents the average number of detections per day of a tag at each of the 75 receivers (mean ± standard deviation). Total 
receivers is the total number of unique receivers that the tag was detected on for the duration of the study

Tag Type Station Depth (m) Total detections Detections·day−1 Detections·day
−1·receiver−1

Total receivers Max distance 
detected (km) (km)
(km)

1 V9 1 50 78,562 365.4 ± 123.0 4.9 ± 11.1 48 5.9

2 V9 3 50 75,942 353.2 ± 118.1 4.7 ± 11.3 49 5.9

3 V9 3 10 49,207 228.9 ± 65.4 3.1 ± 9.4 41 6.4

4 V13 3 50 92,054 428.2 ± 140.1 5.7 ± 11.8 67 8.2

5 V16 1 50 127,242 591.8 ± 203.2 7.9 ± 13.2 71 7.8

6 V16 2 50 121,028 562.9 ± 194.1 7.5 ± 13.2 71 8.0

7 V16 3 50 113,388 527.4 ± 178.6 7.0 ± 12.9 67 7.1

8 V16 3 10 112,000 520.9 ± 162.5 6.9 ± 12.5 74 9.3



Page 6 of 17Klinard et al. Anim Biotelemetry            (2019) 7:17 

between predictor and response variables [29, 30]. The 
gamm function in the R package ‘mgcv’ fits a smoothing 
curve through the data using regression splines and was 
used to fit all GAMMs as it allows for autocorrelation 
and variance structures and random effects [31]. A pri-
mary challenge in range analysis is selecting a model that 
can accurately represent the DE profiles that are char-
acteristic of range studies [10]. While many range stud-
ies have used a variety of linear and nonlinear models to 
describe DE and DR [10, 21, 28], we chose to implement 
GAMMs in part because of their ability to accommodate 
decreased DE at distances typically affected by CPDI as 
well as the above-listed benefits. However, we acknowl-
edge that GAMMs are limited by a propensity to overfit 
and we have aimed to mitigate this issue by implement-
ing smoothness selection to optimize smoothness param-
eters. GAMMs are also limited by a tendency to produce 
p values that are biased low. We controlled for heteroge-
neity in the data by including tag–receiver combinations 
as a random effect with one intercept for each tag–
receiver combination. A first-order auto-regressive mov-
ing average (ARMA) correlation structure was included 
in the model to account for temporal autocorrelation 
between detections on adjacent days nested within each 
tag–receiver combination. The distance covariate was fit 
with a penalized regression spline smoother to reduce 
the potential of overfitting the data when estimating the 
DE between sampled distances. A common occurrence 
in acoustically reflective environments is close proxim-
ity detection interference (CPDI), which is defined as a 
low DE for tags in close proximity to the receiver with 
peak DE occurring at an intermediate distance from the 
receiver [32, 33]. To minimize the underfitting bias of 
smaller distances closer to the receiver where CPDI may 
occur, the largest appropriate basis dimension (k) was 
selected for the distance smoother in each model fol-
lowing recommendations from the choose.k and gam.
check functions in R as well as Sóskuthy [34]. The gam.
check function in the R package ‘mgcv’ was used to assess 
model fit by visually evaluating residual plots and run-
ning diagnostic tests to ensure adequate basis dimensions 
for each smooth [31]. The GAMM results were used to 
predict an overall DE for distances from 100 to 7000 m in 
1-m increments. Model predicted DE was used to create 
an overall range curve across distance for the duration of 
the study.

Temporal variability in detection efficiency
To examine temporal variability in DE across the five 
tag categories, the distance GAMMs that were previ-
ously fit for the entire study period were used to predict 
three distances at which DE corresponded to mean rates 
of 0.25, 0.50, and 0.75 (D0.25, D0.50, D0.75) for each tag 

category. These three distances were calculated for each 
tag category to determine relevant distances that would 
be equivalent to the same mean DE across tag categories. 
The following analyses were conducted individually for 
each tag category. Detection data were grouped by day 
and modeled using GAMMs to create a single DE curve 
across distance for each day (215 days) of the study. All 
GAMMs were fit following the same methods described 
above. Model coefficients for each daily GAMM were 
used to estimate sentinel tag DE for the corresponding 
day at each of the three previously calculated distances 
(DE D0.25, DE D0.50, DE D0.75). The DE D0.25, DE D0.50, and 
DE D0.75 were grouped by week to calculate the mean and 
standard error of DE and examine overall trends in DE 
through time.

Effect of environmental variables on detection efficiency
The following methods were conducted individually for 
each tag type (V9, V13, V16) to analyze and facilitate 
comparison of the impact of environmental variables on 
DE among tag types. For each tag and receiver combina-
tion, DE was calculated for each day of deployment (8 
tags × 90 receivers × 215  days = 154,800 estimated daily 
DE).

Environmental data were obtained from online data-
bases and multiple instruments deployed in the study site 
to examine the effects of each environmental variable on 
DE. Daily mean temperatures at 10 and 50  m were cal-
culated from measurements taken every hour by HOBO 
Pendant loggers deployed at various depths in the study 
site near the sentinel tags. Daily surface water velocity 
and ice thickness data were calculated from hourly read-
ings taken at the center of the receiver array archived in 
the Great Lakes Observing System (GLOS) online data-
base (http://data.glos.us/glcfs​/). The daily difference 
in water temperature between 10 and 50  m—the depth 
range between the shallow and deep tags—was used to 
calculate a variable that represented the strength of the 
thermocline by subtracting the temperature at 50 m from 
the temperature at 10 m.

To evaluate possible drivers of temporal patterns in DE, 
a suite of environmental variables (henceforth covari-
ates) were considered: surface water velocity, ice thick-
ness, water temperature at 10  m, water temperature at 
50  m, thermocline strength, receiver depth, tag depth, 
depth difference between tag and receiver, distance 
between tag and receiver, week, and month. Since tagged 
fish were present in the system during range testing, we 
also included the number of fish detections as a covari-
ate to account for any possible variability in DE caused 
by an influx of fish transmissions interfering with receipt 
of range tag transmissions. We assessed collinearity of 
these covariates using Pearson’s pairwise correlation 

http://data.glos.us/glcfs/
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coefficient to verify independence prior to inclusion in 
additional analyses. Highly collinear pairs included water 
temperature at 10 and 50  m (pairwise cc = 1.0), water 
temperature at 10 m and month (pairwise cc = 0.8), water 
temperature at 50 m and month (pairwise cc = 0.8), week 
and month (pairwise cc = 0.9), week and water tempera-
ture at 50 m (pairwise cc = 0.7), and receiver depth and 
distance between tag and receiver (pairwise cc = − 0.7). 
As such, water temperature at 10 m, water temperature 
at 50  m, month, and week were considered as a single 
covariate represented by water temperature at 50  m in 
further analyses. Receiver depth and distance between 
tag and receiver were also considered a single covariate 
represented by distance from receiver. Daily averages of 
the remaining covariates were linked to the respective 
daily DE.

GAMMs were used to examine non-linear trends in 
time series of DE as a function of surface water velocity, 
ice thickness, water temperature at 50  m, thermocline 
strength, tag depth, depth difference between tag and 
receiver, number of fish detections, and distance between 
tag and receiver, all of which were continuous variables 
except for tag depth. All GAMMs were fit following the 
methods described in above-listed analyses. The opti-
mal ARMA correlation structure was determined using 
the auto.arima function in the R package ‘forecast’ and 
the highest order correlation structure that produced the 
smallest Akaike Information Criterion (AIC) while allow-
ing for model convergence was used [35].

To account for the influence of distance on the trajec-
tory of the smooth for each of the environmental covari-
ates, we included interaction terms for distance and each 
environmental covariate in addition to the main effect 
smooth terms for each variable [34]. We used ‘tensor 
product interactions’ in the GAMM, which are concep-
tually very similar to interactions in linear models [34]. 
A pool of candidate models was created with selected 
model parameters matching hypothesized explanatory 
variables. AIC model selection was used to identify the 
best fitting GAMM. Adjusted R2 is defined as the vari-
ation explained by only the independent variables that 
affect the dependent variable. Statistical analyses were 
performed using R version 3.5.2 [36], and statistical sig-
nificance was assumed at α = 0.05.

Results
Detection summary
A total of 769,423 acoustic transmissions were detected 
from eight stationary acoustic tags on 75 acoustic receiv-
ers in northeastern Lake Ontario from 22 October, 2015 
to 23 May, 2016 (Fig. 1; Table 1). The other 15 receivers in 
the array did not record any detections of the tags as they 
were beyond detection range. Potential false detections 

were identified by calculating the transmission interval 
between sequential detections of tags on each receiver 
in relation to the minimum transmission interval of the 
tags (1750 s). The effect was considered negligible (0.1%). 
A nominal transmission delay of 1800  s resulted in an 
expected 48 transmissions for each acoustic tag per day. 
The average number of detections per day for each of the 
75 receivers was similar within tag types with shallow 
V9 tags exhibiting the lowest number of daily detections 
(3.1 ± 9.4 detections·day−1) and deep V16 tags exhibit-
ing the highest number of daily detections (7.9 ± 13.2 
detections·day−1) (Table 1). The shallow V9 and V16 tags 
were detected at a greater maximum distance (6.4  km 
and 9.3 km, respectively) than their deeper counterparts 
and had a lower number of daily detections (3.1 ± 9.4 
and 6.9 ± 12.5 detections·day−1, respectively) than the 
deep tags. The maximum distance detected ranged from 
5.9 km to 9.3 km (Table 1) although detections at these 
distances occurred infrequently, resulting in a DE of 
nearly zero.

Spatial variability in detection efficiency
DE of the sentinel range tags in Lake Ontario displayed 
an overall negative relationship with distance between 
the tag and receiver for the duration of the study (Fig. 3; 
Table 2). The effects of CPDI were visible in the DE curve 
for the deep V16 tags as indicated by low DE at distances 
closer to the receiver (Fig.  3). Although the DE curves 
for the deep V9, deep V13, and shallow V16 tags did not 
exhibit CPDI, they featured fluctuations in DE at dis-
tances from 0 to 1000 m that are atypical of DE curves in 
environments not impacted by CPDI (Fig.  3). The shal-
low V9 tag did not experience CPDI or an abnormal DE 
profile and had the highest DE (0.97) at the distance clos-
est to the receiver (100 m) (Fig. 3; Table 2). DE and DR 
increased with higher power output of the tags, however, 
the size of the region impacted by CPDI or abnormal DE 
also increased with higher power output (Fig. 3). Beyond 
the distance impacted by CPDI and fluctuating DE, shal-
low tags consistently had lower DE than deep tags of 
the same power output (Table  2). All model smoothing 
splines were significant. Model fit estimated by adjusted 
R2 ranged from 0.824 to 0.895.

Temporal variability in detection efficiency
Estimated DE D0.25, DE D0.50, and DE D0.75 fluctuated 
through time displaying a similar overall trend across all 
tag categories (Fig. 4). Weekly DE was relatively variable 
during the first month of the study and then decreased 
in early December through February, increased rapidly 
through March, remained relatively constant in April and 
then fluctuated more in May (Fig. 4). Weekly DE was less 
variable in shallow tags (maximum range 0.53) than in 
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deeper tags (maximum range 0.75), which is especially 
notable during the last 5 weeks of 2015 and first 4 weeks 
of 2016 (Fig. 4). Tags with higher power output exhibited 
similar variability in DE (deep V16 maximum range 0.75) 
compared to tags with lower power output (deep V9 
maximum range 0.73; Fig. 4). Daily DE was less variable 
at the short and long distances for a given tag–receiver 
with increased variation of DE at the intermediate dis-
tances (Fig.  4). For instance, maximum range of DE for 
the deep V9 tags at the shortest, intermediate, and long-
est distance was 0.55, 0.73, and 0.67, respectively. The 
stocking of 70 tagged bloaters showed no evident impact 
on weekly DE trends (e.g., Figure 4; weeks 48–49). Model 
fit for all daily GAMMs estimated by adjusted R2 ranged 
from 0.732 to 0.997 and was higher than 0.8 for 98% of 
models.

Effect of environmental variables on detection efficiency
Environmental conditions experienced throughout 
the study period were variable for surface water veloc-
ity (range: 0.02–0.57 m s−1), water temperature at 10 m 
(range: 0.25–13.21 °C), water temperature at 50 m (range: 
0.39–12.86  °C), and thermocline index (range: −  1.49–
3.05) whereas ice thickness (range: 0–0.30  m) only var-
ied during the months of January, February, and March 
(Fig. 5). The best fitting GAMMs as identified by the low-
est AIC scores were the full model excluding tag depth 
for the V9 and V16 tags and the full model excluding tag 
depth, depth difference between tag and receiver, and the 
interaction between distance and depth difference for 
the V13 tag (Table 3; see Additional file 1 Table S1 for all 
models). All smooth and interaction terms in the best fit-
ting models were significant. Partial effects of individual 

Fig. 3  Detection efficiency (DE) profiles estimated for the entire study period (22 October, 2015 to 23 May, 2016) by tag power output and depth 
from deployments in northeastern Lake Ontario. Gray circles represent daily DE (0–1) and red lines represent the overall spatial profile of DE fitted 
using a binomial general linear model for each tag category
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environmental variables included in the best fitting mod-
els indicate that distance had the largest effect on DE for 
V9, V13, and V16 tags and the effect of individual envi-
ronmental variables, although less influential, is similar 
among tag types (Fig. 6). Estimates of summed effects of 
the interactions from the best fitting GAMMs for V9 and 
V16 tags revealed that the extent to which DE declines 
with distance is influenced by environmental vari-
ables (Fig.  7). As the distance between tag and receiver 
increases, thermocline, water velocity, and ice thickness 
had a diminishing effect on DE (Fig.  7a–f) and water 
temperature had an increasing effect on DE (Fig. 7g, h). 
Collinear variables that were not included as covariates in 
the models but were also significant were water tempera-
ture at 10 m, week, month, and receiver depth. Model fit 
for the best fitting GAMMs for each tag type estimated 
by adjusted R2 ranged from 0.908 to 0.916.

Maximum recorded detection distance occurred 
once (26 October, 2015) for the shallow tags at 9.3  km 

when surface water velocity and temperature dif-
ference between 10 and 50  m were 0.04  m·s−1 and 
0.09  °C, respectively, relative to the period averages of 
0.10 ± 0.08 m·s−1 and 0.22 ± 0.69 °C. Similarly, the maxi-
mum recorded detection distance occurred twice (26 
October, 2015 and 7 December, 2015) for the deep tags at 
8.2 km when surface water velocity and temperature dif-
ference between 10 and 50 m averaged 0.04 ± 0.00 m·s−1 
and 0.13 ± 0.05  °C, respectively. Most detections at 
maximum range occurred when ice was not present, the 
thermal gradient was relatively small, and surface water 
velocity was low.

Discussion
The present study demonstrated that the probability of 
a receiver detecting a transmission from an acoustic tag 
in Lake Ontario varies both spatially and temporally and 
is influenced by environmental conditions. The primary 
factor that influences DE and DR in acoustic telemetry 
studies is the distance between tag and receiver due to the 
physics of sound propagation in water [10]. The power 
output of the tag also has a strong impact on DE and DR 
as tags with high power are inherently able to transmit 
stronger sound signals that can travel greater distances 
[8]. Finally, an assortment of biotic and abiotic factors in 
the environment can influence the rate of energy attenu-
ation and sound absorption as the signal travels through 
water [9]. Interestingly, we found that the effect of dis-
tance on DE and DR varies across environment variables 
and tag types, demonstrating the complex interaction of 
multiple factors that influence DE and DR.

This study reports higher DE at greater tag–receiver 
distances than many previously published studies as well 
as a greater maximum detection distance. For example, 
we detected transmissions from our tags at a maximum 
distance of 9.3  km; whereas many studies report maxi-
mum detection distance below 1  km [20, 23, 37]. The 
main reason for these differences is the relatively less 
dense and less dynamic freshwater environment of Lake 
Ontario in comparison to many marine or coral reef set-
tings. Similar to our findings, Hayden et al. [10] observed 
a maximum detection distance of 11.8 km in a large tem-
perate freshwater lake. Large detection distances may 
add a level of complexity to analysis of telemetry data 
from tagged animals due to increased uncertainty associ-
ated with position estimates. All of the tags in this study 
exhibited similar relationships between DE and distance, 
and DR increased as power output increased.

Depth can be an important factor in telemetry studies 
because it can increase Euclidean distances between a tag 
and receiver and transmission signals may cross vertically 
heterogeneous or stratified layers (e.g., thermocline). 

Table 2  Detection efficiencies (0–1) ± standard error 
for various tag power outputs and depths at set distances 
ranging from 100 to 2400 m in Lake Ontario

Detection efficiencies were estimated from GAMMs calculated for each tag 
category using detection data from 22 October, 2015 to 23 May, 2016

Distance 
(m)

Tag category

V9 50 m V9 11 m V13 50 m V16 50 m V16 11 m

100 0.87 ± 0.03 0.97 ± 0.06 0.84 ± 0.04 0.78 ± 0.04 0.85 ± 0.03

200 0.85 ± 0.02 0.91 ± 0.04 0.83 ± 0.03 0.80 ± 0.02 0.84 ± 0.03

300 0.84 ± 0.02 0.85 ± 0.03 0.82 ± 0.02 0.82 ± 0.02 0.84 ± 0.02

400 0.83 ± 0.02 0.77 ± 0.03 0.82 ± 0.02 0.84 ± 0.02 0.83 ± 0.02

500 0.83 ± 0.02 0.68 ± 0.03 0.82 ± 0.02 0.85 ± 0.02 0.82 ± 0.02

600 0.81 ± 0.02 0.59 ± 0.03 0.81 ± 0.02 0.86 ± 0.02 0.80 ± 0.02

700 0.78 ± 0.02 0.50 ± 0.02 0.80 ± 0.02 0.86 ± 0.01 0.78 ± 0.02

800 0.73 ± 0.02 0.40 ± 0.02 0.77 ± 0.02 0.85 ± 0.02 0.75 ± 0.02

900 0.67 ± 0.02 0.32 ± 0.03 0.74 ± 0.03 0.83 ± 0.02 0.72 ± 0.02

1000 0.59 ± 0.02 0.70 ± 0.03 0.81 ± 0.02 0.68 ± 0.03

1100 0.51 ± 0.02 0.65 ± 0.03 0.78 ± 0.02 0.64 ± 0.03

1200 0.44 ± 0.02 0.59 ± 0.03 0.76 ± 0.02 0.60 ± 0.03

1300 0.38 ± 0.02 0.53 ± 0.03 0.73 ± 0.02 0.56 ± 0.03

1400 0.34 ± 0.02 0.47 ± 0.03 0.70 ± 0.02 0.52 ± 0.03

1500 0.30 ± 0.02 0.42 ± 0.03 0.65 ± 0.02 0.48 ± 0.02

1600 0.25 ± 0.02 0.36 ± 0.03 0.58 ± 0.02 0.45 ± 0.02

1700 0.31 ± 0.02 0.50 ± 0.02 0.41 ± 0.02

1800 0.27 ± 0.02 0.42 ± 0.02 0.37 ± 0.02

1900 0.35 ± 0.02 0.33 ± 0.02

2000 0.32 ± 0.02 0.29 ± 0.02

2100 0.30 ± 0.02 0.25 ± 0.02

2200 0.30 ± 0.02

2300 0.28 ± 0.02

2400 0.26 ± 0.02
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Relatively few range studies have incorporated tag and 
receiver depth as a variable in their analyses; those that 
have are often at relatively shallow depths of < 20 m [23, 
33]. DE in our study was lower for shallow tags compared 
to deep tags of the same power output, which may be a 
result of greater overlap of the original signal and reflec-
tion of signals created by transmissions from shallow 
tags traveling across depth. Similarly, Scherrer et al. [33] 
observed greater DE and DR for tags at depth (15 m) than 
for tags closer to the surface (1  m). In contrast, Cagua 
et  al. [23] found that increasing proximity of the tag to 
the bottom in a coral reef habitat significantly reduced 
the probability of detecting the tag. Inconsistencies in 
the effects of depth across studies may indicate that the 
effects of equipment depth—both tags and receivers—are 
dependent on the characteristics of the environment (e.g., 
local bathymetry, environmental noise, bottom composi-
tion, etc.). In reef environments, there is more environ-
mental noise closer to the benthos that interferes with 
DE as a result of noisy marine animals (e.g., snapping 

shrimp, parrotfishes), as well as irregular bottom topog-
raphy. In a freshwater environment, as demonstrated in 
this study, levels of biological noise at depth are expected 
to be limited, and deeper waters may provide a barrier to 
the effects of some environmental conditions (e.g., wind, 
precipitation) that could impact DE. Different bottom 
compositions can also result in reflective or absorptive 
environments, thus increasing or reducing the amount 
of noise in a system. Many telemetry studies focus on 
surface-oriented species (e.g., salmon) and most receiver 
deployments are bottom-oriented, thus it is important to 
consider the influence of tag and receiver depth on gear 
performance. Receivers positioned higher in the water 
column may also introduce issues with receiver move-
ment, tilt, and entanglement with longer mooring lines, 
especially in open water systems. To reduce the poten-
tial effects of equipment depth on DE, telemetry studies 
should be designed based on the expected depth used by 
the study species and associated environmental structure 
or conditions that will impact DE.

Fig. 4  Detection efficiency (DE) time series estimated for three distances (D0.25, D0.50, D0.75) by tag type and depth from deployments in 
northeastern Lake Ontario. Circles represent weekly DE (0–1) and ribbons signify standard error for each tag category. Vertical red line indicates date 
of release of tagged fish. Date is shown in the format of week–year
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Fig. 5  Daily environmental variables for the entire study period (22 October, 2015 to 23 May, 2016): a surface water velocity (m·s−1); b water 
temperature (°C) at 10 m (blue) and 50 m (red); c ice thickness (m); d thermocline index

Table 3  Summary information for  the  best fitting five candidate models (including global model) summarizing 
the detection efficiency (DE) of V9, V13, and V16 tags deployed in northeastern Lake Ontario from 22 October, 2015 to 23 
May, 2016 (215 days) as a function of environmental variables

DE is the daily probability of detecting an acoustic transmission. s() indicates a smoother and ti() indicates a tensor product interaction. Environmental variables 
included were distance between tag and receiver (D), thermocline strength (th), surface water velocity (v), ice thickness (i), temperature at 50 m (t), depth difference 
between receiver and tag (d), number of fish detections (f), and tag depth (tag). All models included an ARMA autocorrelation structure to account for temporal 
autocorrelation in data and tag–receiver combinations as a random effect. Akaike information criteria (AIC), delta AIC, and estimated adjusted coefficient of 
determination (Adj. R2) are summarized for each model. The lowest AIC scores are italicized for each tag type to identify the best fitting model. An asterisk (*) denotes 
models that did not include tag as a covariate due to the lack of tags present at more than one depth

Model V9 V13 V16

AIC ΔAIC Adj. R2 AIC ΔAIC Adj. R2 AIC ΔAIC Adj. R2

DE~ ti(D,th) + ti(D,v) + ti(D,i) + ti(D,t)+
ti(D,d) + ti(D,f) + s(D) + s(th) + s(v) + s(i)+
s(t) + s(d) + s(f) + tag

− 33,302.38 13.31 0.908 − 10,256.59* 15.31 0.916 − 38,410.15 13.44 0.907

DE~ ti(D,th) + ti(D,v) + ti(D,i) + ti(D,t)+
ti(D,d) + ti(D,f) + s(D) + s(th) + s(v) + s(i)+
s(t) + s(f) + tag

− 33,290.74 24.95 0.903 − 10,262.80* 9.10 0.916 − 38,417.44 6.15 0.907

DE~ ti(D,th) + ti(D,v) + ti(D,i) + ti(D,t)+
ti(D,d) + ti(D,f) + s(D) + s(th) + s(v) + s(i)+
s(t) + s(d) + s(f)

− 33,315.69 0 0.908 − 10,256.59 15.32 0.916 − 38,423.59 0 0.908

DE~ ti(D,th) + ti(D,v) + ti(D,i) + ti(D,t)+
ti(D,f) + s(D) + s(th) + s(v) + s(i) + s(t)+
s(f) + tag

− 33,183.61 132.08 0.876 − 10,271.90* 0 0.916 − 38,386.14 37.45 0.902

DE~ ti(D,th) + ti(D,v) + ti(D,i) + ti(D,f)+
s(D) + s(th) + s(v) + s(i) + s(t) + s(f) + tag

− 33,302.38 13.31 0.908 − 10,256.59* 15.32 0.916 − 38,410.15 13.44 0.907
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A notable difference in DE across tag categories was 
the variability at distances close to the receiver as a result 
of CPDI and abnormal fluctuations in DE. Although 
CPDI is a phenomenon that has recently been defined 
in aquatic acoustic telemetry literature [32], some stud-
ies have shown that the size of the radial region impacted 
by CPDI increases with power output and tag depth [32, 
33]. The effect of CPDI may have been underestimated 
in this study as the minimum tag–receiver distance was 
100 m and residual signal power, and thus the potential 
for CPDI, would increase at shorter distances. If unac-
counted for, CPDI could lead to decreased performance 
of an acoustic telemetry array and the production of less 
reliable detection data that is misinterpreted during anal-
ysis. This may be particularly problematic for sedentary 
species or home-range studies, but less problematic for 
migratory species expected to move past a receiver as the 
tags would be detected prior to entry into the CPDI and 
post-exit. Researchers generally aim for the maximum 
possible DR and thus employ the most powerful tags the 
study species can physically (or ethically) accommodate 
[19], but the effects of CPDI on higher power output tags 
is worth further consideration in study design depending 
on the scale of the study, the resolution of data sought 
and the objectives.

The temporal variation observed in our study suggests 
that short-term range studies may not be representative 
of DE over longer time intervals, particularly in systems 
that have a lot of seasonal variation in environmental 
conditions, such as thermoclines and seasonal ice that 
vary within and between years. Over the 7-month study 
period, we observed a high degree of variability in DE 
that was inconsistent through time. Temporal trends 
were similar across tag types, indicating that variability 
in DE was caused by temporal changes in the study sys-
tem rather than tag characteristics. Decreased DE dur-
ing winter months may be a result of the noise created 
during periods of ice formation and break-up interfering 
with acoustic signal reception. Most range assessment 
studies have focused more on spatial variation [38] or 
have occurred over a shorter term that may not reveal the 
same magnitude of temporal variability [39, 40]. As such, 
to identify periods of high and low DE in systems in tem-
perate systems, like Lake Ontario, it may be necessary to 

deploy sentinel range tags for the entire duration of the 
telemetry study. The present study did not encompass a 
full year of data and it is possible that had greater sea-
sonal variation been captured, the environmental covari-
ates would have exhibited a stronger relationship with 
DE.

Models with the best fit for each tag type included the 
majority of covariates with all terms in the model being 
significant, suggesting that DE may be related to a com-
bination of multiple biotic and abiotic parameters that 
can vary across spatial and temporal scales. Temporal 
variation in DE is largely influenced by changes in envi-
ronmental conditions [21]. For instance, the low DE that 
was experienced during winter months is likely associ-
ated with a combination of lower water temperatures, 
an isothermal water column, increased ice cover, or 
other environmental changes that are characteristic of 
the winter season. Huveneers et al. [21] compiled a sum-
mary of the influences of environmental variables on DE 
from numerous range studies, illustrating the variability 
observed across studies. For instance, while some studies 
reported tag depth and wind speed as not being signifi-
cant [41, 42], other studies reported a significant negative 
relationship [23] or a significant positive relationship [25] 
with DE.

Water temperature and thermal gradients have been 
found to impact DE due to environmental changes asso-
ciated with water temperature (e.g., increased activity in 
ectothermic organisms) and the reflection and distortion 
of sound signals by thermal gradients [22, 43, 44]. Water 
temperature may be correlated with the presence of ben-
thic organisms such as snapping shrimp in marine envi-
ronments, the density of small biological organisms in 
the water column, or vegetation growth, some of which 
have been attributed to decreases in DE [42]. Although 
the effect appeared small, our study is consistent with 
others in finding that increased temperature and thermal 
stratification negatively impact DE. Huveneers et al. [21] 
reported four other range studies that assessed the effects 
of thermal stratification and all studies found a negative 
relationship with DE [23, 26, 41, 45]. The majority of our 
study period occurred when the lake was isothermal or 
a relatively weak thermal gradient was present. Unfortu-
nately, these data do not encompass the summer season 

(See figure on next page.)
Fig. 6  Partial effects of nonlinear environmental variables on detection efficiency (DE) for each of the three best fitting generalized additive 
mixed models (GAMMs) for the V9, V13, and V16 tags, respectively. Environmental variables included are distance between tag and receiver (m), 
thermocline index, surface water velocity (m·s−1), ice thickness (m), temperature at 50 m (°C), number of fish detections, and depth difference 
between tag and receiver (m). Thermocline index represents the strength of the thermocline where zero signifies thermal homogeneity and values 
departing from zero in either direction indicate an increasing thermal gradient. Positive values of depth difference indicate that the tag is shallower 
than the receiver whereas negative values indicate that the tag is deeper than the receiver. The y-axes represent the partial effect on DE and are 
shown in the format of s (covariate, effective degrees of freedom). Shaded areas represent the 95% confidence interval around each smooth term
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when thermal stratification is more pronounced; hence, 
we cannot directly comment on its effect, although we 
hypothesize the thermocline would result in a much 
stronger impact on DE. For example, Singh et  al. [26] 
reported a 75% reduction in DE in water with a 5  °C 
temperature difference. The maximum temperature dif-
ference we observed in the water column during our 
study was ~ 3  °C, which is relatively small compared to 

the ~ 15  °C temperature difference observed within our 
array in the summer. Since thermally stratified water col-
umns can reflect and distort acoustic transmissions, it is 
especially important to consider the depth of receivers 
and the study animal where seasonal thermoclines may 
be present, such as the Great Lakes. Water tempera-
ture at 10 m, week, and month were not directly exam-
ined due to collinearity with water temperature at 50 m. 

Fig. 7  Summed effects of nonlinear interaction between distance (m) and environmental variables on detection efficiency (DE) for V9 tags and V16 
tags from deployments in northeastern Lake Ontario: a thermocline index for V9; b thermocline index for V16; c surface water velocity (m·s−1) for 
V9; d surface water velocity (m·s−1) for V16; e ice thickness (m) for V9; f ice thickness (m) for V16; g temperature at 50 m (°C) for V9; h temperature at 
50 m (°C) for V16. Thermocline index represents the strength of the thermocline where zero signifies thermal homogeneity and values increasing in 
either direction from zero indicate an increasing thermal gradient. Contour lines and colour represent DE (0–1)
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Water temperature at 10 m would have the same effect as 
water temperature at 50 m, with increased temperatures 
closer to the surface resulting in decreased DE. Tempo-
ral parameters such as week and month are often corre-
lated with environmental variables in a system like Lake 
Ontario where seasonal environmental changes are prev-
alent. While we believe that our environmental variables 
captured the temporal trends in DE in Lake Ontario, 
week or month might be beneficial in identifying reduced 
receiver performance over time or the effects of other 
variables that might have a more linear trend such as a 
biofouling.

Surface water velocity is typically related to wind 
speed, wave height, and current, all of which are varia-
bles that have been previously examined in DE and range 
studies [14, 25, 27]. Wind speed, wave height, and current 
typically have either no effect or a negative relationship 
with DE [27, 45]. In our study, there was an immediate 
decrease in DE as soon as water velocity approached 
0.1  m·s−1. Environmental conditions that disturb the 
water’s surface can alter sound signals. Under some cir-
cumstances, variables such as surface water velocity or 
ice thickness can decrease DE by distorting sound trans-
missions (e.g., tag pings). Alternatively, they can also 
cause reflection of transmissions downward through the 
water column to the receivers, which may increase DE. 
In our study, ice thickness had an interesting relation-
ship with DE where DE was high when there is no ice, 
fluctuates at ice thicknesses of 0.02–0.12  m, and then 
increases again when ice thickness exceeds 0.12 m. Since 
most range assessment studies are conducted in tropi-
cal marine environments, few studies have examined the 
impact of ice on detection of acoustic transmissions [46]. 
Our results suggest that during periods of ice formation 
and ice break-up, there may be additional acoustic noise 
in the environment that impacts DE (e.g., ice cracking, 
ice abrasion); whereas thicker ice may be more stable, 
thus creating high DE similar to when ice is not present 
in the lake. It is possible that this could be a result of the 
thick ice reflecting acoustic signals downward through 
the water column. Alternatively, thick and stable ice may 
form a barrier between wind-generated noise and the 
telemetry gear and reducing wind-generated waves.

A variable that is often overlooked in retrospective 
range analyses is the number of fish detections occurring 
on the receivers throughout the study period. The dura-
tion of a complete acoustic transmission varies by manu-
facturer but is ~ 3.5 s for Vemco tags [28]. During the time 
that one transmission is being detected and recorded by 
a receiver, a transmission from another tag could arrive 
at the receiver and interfere with the receiver’s ability 
to properly decode either signal [17, 18]. Larger num-
bers of fish present in an array at the same time increase 

the probability of these signal code collisions occurring 
[18]. The number of tagged fishes concurrently present 
in a system can depend on the animal’s behaviour (e.g., 
schooling, highly resident species, animals with small 
space use, migratory species, etc.) and thus, it is impor-
tant to consider these variables in study design when 
selecting the nominal delay of tags and the sample size. 
Retrospective analysis of receiver performance in relation 
to noise levels and sources in our study suggested that 
noise produced by environmental sources and tagged fish 
present in the system were not at levels that would have 
a significant impact on DE [see Additional file 1]. Inclu-
sion of the number of fish detections in the best fitting 
model was likely a result of increased detection of tagged 
fish associated with increased DE.

A possible confounding factor in our study stems from 
calculating DE as a daily metric. We calculated DE at a 
daily level because the tags used were programmed with 
random transmission intervals (i.e., 1750–1850  s) to 
avoid potential conflicts with other tags in the area and 
it is not possible to predict when the tag was expected to 
transmit. Due to the nominal delay of the tags, alternative 
analyses were not possible, such as treating each trans-
mission as a binomial distribution at the 30-min scale. 
Calculating DE at a daily level allowed for more possible 
values of DE (i.e., a maximum of 48 transmissions per day 
results in 49 possible values of DE as a daily metric) than 
using a shorter time period. For predictor variables that 
vary throughout the day (e.g., wind is often highly vari-
able), we are likely to miss the effect of extreme values on 
DE via this averaging. The “instantaneous effect” of these 
environmental conditions is likely to be more extreme 
than the averages we present, potentially resulting in 
periods throughout a day when DE and DR are greatly 
compromised. As such, the influence of environmen-
tal conditions on DE presented in this study may be an 
underestimate. Additionally, complex non-linear models 
can be biased resulting in low AIC values [47]. Conse-
quently, our interpretation of model selection results has 
been cautious; nevertheless, it is evident that environ-
mental variables are contributory.

Conclusions
Here, we conducted range testing using an extensive 
telemetry dataset in a system that is underrepresented 
in acoustic telemetry range studies and contributed to 
our understanding of acoustic telemetry performance in 
freshwater. As more researchers incorporate telemetry 
technologies in their studies, it becomes increasingly 
important to address associated issues to improve the 
quality and interpretation  of data. The unique perfor-
mance of acoustic telemetry arrays that has been demon-
strated in a variety of environments highlights the value 
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of incorporating methods for in  situ range testing and 
retrospective analysis of DE in study design. While many 
range studies have been executed to determine DE and 
DR and how they fluctuate spatially and temporally in a 
large-scale system or type of environment, it is impor-
tant to acknowledge the complexity of each unique study 
location and the non-linear effects of environmental 
variables. Our study revealed that the effect of individual 
environmental conditions may increase or decrease with 
changes in distance or depth and is inconsistent across 
tag types as illustrated by interactions we presented 
between different variables. Range studies are valuable 
in determining DE and DR prior to a telemetry study to 
inform study design and retrospective analysis of range 
is important to determine changes in DE and the poten-
tial impacts of the environment throughout a telemetry 
study. However, unless one environmental variable or 
interaction has an overwhelming effect on DE and DR 
at a specific location or during a certain period and the 
exact location and depth of the study animal are known, 
it may be difficult to assess range in a manner that can be 
applied directly to detection data of tagged animals. We 
recommend conducting range studies concurrent with 
animal telemetry to estimate variation in DE and DR that 
most closely matches the environment experienced by 
study animals. Future range studies in freshwater lakes 
should compare static and mobile range testing to evalu-
ate how accurately DE of a sentinel tag represents that 
of a mobile tag to inform on whether static range testing 
can be used to accurately interpret detections of mobile 
tagged individuals.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s4031​7-019-0179-1.

Additional file 1. Additional material showing receiver performance 
metrics calculated for receivers in the array during the entire study period 
(October 2015–May 2016) and additional environmental model results.
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