103 research outputs found
The sensitivity of British weather to ocean tides
Tides in shelf seas greatly impact ocean mixing and temperature structure. Using a regionalâcoupled oceanâatmosphere prediction system, at ocean coastal process and atmosphere convection permitting scales, we assess the influence of tides on British weather by comparing simulations with and without tides. In summer, when seasonal stratification is particularly sensitive to tides, the seaâsurface temperature is up to 6 K cooler in simulations with tidal mixing. Tides cool the air temperature over the sea by up to 3 K, and nearby land by up to 1.4 K. The mean air temperature across Great Britain land areas cools by 0.3 K with tides. Changes in nearâsurface stability result in decreases in summer mean wind speeds over the ocean. A 6% reduction in summer precipitation is found with tides, consistent with cooler temperatures. This study has implications for climate projections since globalâcoupled models typically do not include tides
On the Internal Absorption of Galaxy Clusters
A study of the cores of galaxy clusters with the Einstein SSS indicated the
presence of absorbing material corresponding to 1E+12 Msun of cold cluster gas,
possibly resulting from cooling flows. Since this amount of cold gas is not
confirmed by observations at other wavelengths, we examined whether this excess
absorption is present in the ROSAT PSPC observations of 20 bright galaxy
clusters. For 3/4 of the clusters, successful spectral fits were obtained with
absorption due only to the Galaxy, and therefore no extra absorption is needed
within the clusters, in disagreement with the results from the Einstein SSS
data for some of the same clusters. For 1/4 of the clusters, none of our
spectral fits was acceptable, suggesting a more complicated cluster medium than
the two-temperature and cooling flow models considered here. However, even for
these clusters, substantial excess absorption is not indicated.Comment: accepted by the Astrophysical Journa
Pre-pregnancy predictors of hypertension in pregnancy among Aboriginal and Torres Strait Islander women in north Queensland, Australia; a prospective cohort study
BACKGROUND Compared to other Australian women, Indigenous women are frequently at greater risk for hypertensive disorders of pregnancy. We examined pre-pregnancy factors that may predict hypertension in pregnancy in a cohort of Aboriginal and Torres Strait Islander women in north Queensland. METHODS Data on a cohort of 1009 Indigenous women of childbearing age (15â44âyears) who participated in a 1998â2000 health screening program in north Queensland were combined with 1998â2008 Queensland hospitalisations data using probabilistic data linkage. Data on the women in the cohort who were hospitalised for birth (nâ=â220) were further combined with Queensland perinatal data which identified those diagnosed with hypertension in pregnancy. RESULTS Of 220 women who gave birth, 22 had hypertension in the pregnancy after their health check. The mean age of women with and without hypertension was similar (23.7âyears and 23.9âyears respectively) however Aboriginal women were more affected compared to Torres Strait Islanders. Pre-pregnancy adiposity and elevated blood pressure at the health screening program were predictors of a pregnancy affected by hypertension. After adjusting for age and ethnicity, each 1âcm increase in waist circumference showed a 4% increased risk for hypertension in pregnancy (PR 1.04; 95% CI; 1.02-1.06); each 1 point increase in BMI showed a 9% adjusted increase in risk (1.09; 1.04-1.14). For each 1âmmHg increase in baseline systolic blood pressure there was an age and ethnicity adjusted 6% increase in risk and each 1âmmHg increase in diastolic blood pressure showed a 7% increase in risk (1.06; 1.03-1.09 and 1.07; 1.03-1.11 respectively). Among those free of diabetes at baseline, the presence of the metabolic syndrome (International Diabetes Federation criteria) predicted over a three-fold increase in age-ethnicity-adjusted risk (3.5; 1.50-8.17). CONCLUSIONS Pre-pregnancy adiposity and features of the metabolic syndrome among these young Aboriginal and Torres Strait Islander women track strongly to increased risk of hypertension in pregnancy with associated risks to the health of babies.Sandra K Campbell, John Lynch, Adrian Esterman and Robyn McDermot
Bodyweight Perceptions among Texas Women: The Effects of Religion, Race/Ethnicity, and Citizenship Status
Despite previous work exploring linkages between religious participation and health, little research has looked at the role of religion in affecting bodyweight perceptions. Using the theoretical model developed by Levin et al. (Sociol Q 36(1):157â173, 1995) on the multidimensionality of religious participation, we develop several hypotheses and test them by using data from the 2004 Survey of Texas Adults. We estimate multinomial logistic regression models to determine the relative risk of women perceiving themselves as overweight. Results indicate that religious attendance lowers risk of women perceiving themselves as very overweight. Citizenship status was an important factor for Latinas, with noncitizens being less likely to see themselves as overweight. We also test interaction effects between religion and race. Religious attendance and prayer have a moderating effect among Latina non-citizens so that among these women, attendance and prayer intensify perceptions of feeling less overweight when compared to their white counterparts. Among African American women, the effect of increased church attendance leads to perceptions of being overweight. Prayer is also a correlate of overweight perceptions but only among African American women. We close with a discussion that highlights key implications from our findings, note study limitations, and several promising avenues for future research
The XMM Cluster Survey: The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback
Using a sample of 123 X-ray clusters and groups drawn from the XMM-Cluster
Survey first data release, we investigate the interplay between the brightest
cluster galaxy (BCG), its black hole, and the intra-cluster/group medium (ICM).
It appears that for groups and clusters with a BCG likely to host significant
AGN feedback, gas cooling dominates in those with Tx > 2 keV while AGN feedback
dominates below. This may be understood through the sub-unity exponent found in
the scaling relation we derive between the BCG mass and cluster mass over the
halo mass range 10^13 < M500 < 10^15Msol and the lack of correlation between
radio luminosity and cluster mass, such that BCG AGN in groups can have
relatively more energetic influence on the ICM. The Lx - Tx relation for
systems with the most massive BCGs, or those with BCGs co-located with the peak
of the ICM emission, is steeper than that for those with the least massive and
most offset, which instead follows self-similarity. This is evidence that a
combination of central gas cooling and powerful, well fuelled AGN causes the
departure of the ICM from pure gravitational heating, with the steepened
relation crossing self-similarity at Tx = 2 keV. Importantly, regardless of
their black hole mass, BCGs are more likely to host radio-loud AGN if they are
in a massive cluster (Tx > 2 keV) and again co-located with an effective fuel
supply of dense, cooling gas. This demonstrates that the most massive black
holes appear to know more about their host cluster than they do about their
host galaxy. The results lead us to propose a physically motivated, empirical
definition of 'cluster' and 'group', delineated at 2 keV.Comment: Accepted for publication in MNRAS - replaced to match corrected proo
Recommended from our members
The Inner-Shelf Dynamics Experiment
17 USC 105 interim-entered record; under review.The article of record as published may be found at http://dx.doi.org/10.1175/BAMS-D-19-0281.1The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from SeptemberâOctober 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.U.S. Office of Naval Research (ONR)ONR Departmental Research Initiative (DRI)Inner-Shelf Dynamics Experiment (ISDE
Recommended from our members
The Copernicus Marine Environment Monitoring Service Ocean State Report
The Copernicus Marine Environment Monitoring Service (CMEMS) Ocean State Report (OSR) provides an annual report of the state of the global ocean and European regional seas for policy and decision-makers with the additional aim of increasing general public awareness about the status of, and changes in, the marine environment. The CMEMS OSR draws on expert analysis and provides a 3-D view (through reanalysis systems), a view from above (through remote-sensing data) and a direct view of the interior (through in situ measurements) of the global ocean and the European regional seas. The report is based on the unique CMEMS monitoring capabilities of the blue (hydrography, currents), white (sea ice) and green (e.g. Chlorophyll) marine environment. This first issue of the CMEMS OSR provides guidance on Essential Variables, large-scale changes and specific events related to the physical ocean state over the period 1993â2015. Principal findings of this first CMEMS OSR show a significant increase in global and regional sea levels, thermosteric expansion, ocean heat content, sea surface temperature and Antarctic sea ice extent and conversely a decrease in Arctic sea ice extent during the 1993â2015 period. During the year 2015 exceptionally strong large-scale changes were monitored such as, for example, a strong El Niño Southern Oscillation, a high frequency of extreme storms and sea level events in specific regions in addition to areas of high sea level and harmful algae blooms. At the same time, some areas in the Arctic Ocean experienced exceptionally low sea ice extent and temperatures below average were observed in the North Atlantic Ocean
âBeads-on-a-stringâ star formation tied to one of the most powerful active galactic nucleus outbursts observed in a cool-core galaxy cluster
With two central galaxies engaged in a major merger and a remarkable chain of 19 young stellar superclusters wound around them in projection, the galaxy cluster SDSS J1531+3414 (z = 0.335) offers an excellent laboratory to study the interplay between mergers, active galactic nucleus (AGN) feedback, and star formation. New Chandra X-ray imaging reveals rapidly cooling hot (T ⌠106 K) intracluster gas, with two âwingsâ forming a concave density discontinuity near the edge of the cool core. LOFAR 144 MHz observations uncover diffuse radio emission strikingly aligned with the âwings,â suggesting that the âwingsâ are actually the opening to a giant X-ray supercavity. The steep radio emission is likely an ancient relic of one of the most energetic AGN outbursts observed, with 4pV > 1061 erg. To the north of the supercavity, GMOS detects warm (T ⌠104 K) ionized gas that enshrouds the stellar superclusters but is redshifted up to +800 km sâ1 with respect to the southern central galaxy. The Atacama Large Millimeter/submillimeter Array detects a similarly redshifted âŒ1010 M â reservoir of cold (T ⌠102 K) molecular gas, but it is offset from the young stars by âŒ1â3 kpc. We propose that the multiphase gas originated from low-entropy gas entrained by the X-ray supercavity, attribute the offset between the young stars and the molecular gas to turbulent intracluster gas motions, and suggest that tidal interactions stimulated the âbeads-on-a-stringâ star formation morphology
Design and Rationale of the Global Phase 3 NEURO-TTRansform Study of Antisense Oligonucleotide AKCEA-TTR-LRx (ION-682884-CS3) in Hereditary Transthyretin-Mediated Amyloid Polyneuropathy
Introduction: AKCEA-TTR-LRx is a ligand-conjugated antisense (LICA) drug in development for the treatment of hereditary transthyretin amyloidosis (hATTR), a fatal disease caused by mutations in the transthyretin (TTR) gene. AKCEA-TTR-LRx shares the same nucleotide sequence as inotersen, an antisense medicine approved for use in hATTR polyneuropathy (hATTR-PN). Unlike inotersen, AKCEA-TTR-LRx is conjugated to a triantennary N-acetylgalactosamine moiety that supports receptor-mediated uptake by hepatocytes, the primary source of circulating TTR. This advanced design increases drug potency to allow for lower and less frequent dosing. The NEURO-TTRansform study will investigate whether AKCEA-TTR-LRx is safe and efficacious, with the aim of improving neurologic function and quality of life in hATTR-PN patients.
Methods/design: Approximately 140 adults with stage 1 (independent ambulation) or 2 (requires ambulatory support) hATTR-PN are anticipated to enroll in this multicenter, open-label, randomized, phase 3 study. Patients will be assigned 6:1 to AKCEA-TTR-LRx 45 mg subcutaneously every 4 weeks or inotersen 300 mg once weekly until the prespecified week 35 interim efficacy analysis, after which patients receiving inotersen will receive AKCEA-TTR-LRx 45 mg subcutaneously every 4 weeks. All patients will then receive AKCEA-TTR-LRx through the remainder of the study treatment period. The final efficacy analysis at week 66 will compare the AKCEA-TTR-LRx arm with the historical placebo arm from the phase 3 trial of inotersen (NEURO-TTR). The primary outcome measures are between-group differences in the change from baseline in serum TTR, modified Neuropathy Impairment Score + 7, and Norfolk Quality of Life-Diabetic Neuropathy questionnaire.
Conclusion: NEURO-TTRansform is designed to determine whether targeted delivery of AKCEA-TTR-LRx to hepatocytes with lower and less frequent doses will translate into clinical and quality-of-life benefits for patients with hATTR-PN
- âŠ