110 research outputs found

    To Trust or Not to Trust? Developing Trusted Digital Spaces through Timely Reliable and Personalized Provenance

    Get PDF
    Organizations are increasingly dependent on data stored and processed by distributed, heterogeneous services to make critical, high-value decisions. However, these service-oriented computing environments are dynamic in nature and are becoming ever more complex systems of systems. In such evolving and dynamic eco-system infrastructures, knowing how data was derived is of significant importance in determining its validity and reliability. To address this, a number of advocates and theorists postulate that provenance is critical to building trust in data and the services that generated it as it provides evidence for data consumers to judge the integrity of the results. This paper presents a summary of the STRAPP (trusted digital Spaces through Timely Reliable And Personalised Provenance) project, which is designing and engineering mechanisms to achieve a holistic solution to a number of real-world service-based decision-support systems

    Effect of a reduction in glomerular filtration rate after nephrectomy on arterial stiffness and central hemodynamics: rationale and design of the EARNEST study

    Get PDF
    Background: There is strong evidence of an association between chronic kidney disease (CKD) and cardiovascular disease. To date, however, proof that a reduction in glomerular filtration rate (GFR) is a causative factor in cardiovascular disease is lacking. Kidney donors comprise a highly screened population without risk factors such as diabetes and inflammation, which invariably confound the association between CKD and cardiovascular disease. There is strong evidence that increased arterial stiffness and left ventricular hypertrophy and fibrosis, rather than atherosclerotic disease, mediate the adverse cardiovascular effects of CKD. The expanding practice of live kidney donation provides a unique opportunity to study the cardiovascular effects of an isolated reduction in GFR in a prospective fashion. At the same time, the proposed study will address ongoing safety concerns that persist because most longitudinal outcome studies have been undertaken at single centers and compared donor cohorts with an inappropriately selected control group.<p></p> Hypotheses: The reduction in GFR accompanying uninephrectomy causes (1) a pressure-independent increase in aortic stiffness (aortic pulse wave velocity) and (2) an increase in peripheral and central blood pressure.<p></p> Methods: This is a prospective, multicenter, longitudinal, parallel group study of 440 living kidney donors and 440 healthy controls. All controls will be eligible for living kidney donation using current UK transplant criteria. Investigations will be performed at baseline and repeated at 12 months in the first instance. These include measurement of arterial stiffness using applanation tonometry to determine pulse wave velocity and pulse wave analysis, office blood pressure, 24-hour ambulatory blood pressure monitoring, and a series of biomarkers for cardiovascular and bone mineral disease.<p></p> Conclusions: These data will prove valuable by characterizing the direction of causality between cardiovascular and renal disease. This should help inform whether targeting reduced GFR alongside more traditional cardiovascular risk factors is warranted. In addition, this study will contribute important safety data on living kidney donors by providing a longitudinal assessment of well-validated surrogate markers of cardiovascular disease, namely, blood pressure and arterial stiffness. If any adverse effects are detected, these may be potentially reversed with the early introduction of targeted therapy. This should ensure that kidney donors do not come to long-term harm and thereby preserve the ongoing expansion of the living donor transplant program.<p></p&gt

    Coronary Atherosclerotic Plaque Activity and Future Coronary Events

    Get PDF
    This study was funded by a Wellcome Trust Senior Investigator Award (WT103782AIA). Image analysis was supported by National Institutes for Health (R34HL161195 and 1R01HL135557). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Wellcome Trust or the National Institutes of Health. The British Heart Foundation supports DEN (CH/09/002, RG/16/10/32375, RE/18/5/34216), MRD (FS/SCRF/21/32010), NLM (CH/F/21/90010, RG/20/10/34966, RE/18/5/34216) AJM (AA/18/3/34220) and MCW (FS/ICRF/20/26002) and DD (FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, PG/15/88/31780, PG/17/64/33205). MRD is the recipient of the Sir Jules Thorn Award for Biomedical Research 2015 (15/JTA). PJS is supported by outstanding investigator award National Institutes for Health (R35HL161195). JK is supported by the National Science Centre 2021/41/B/NZ5/02630. EvB is supported by SINAPSE (www.sinapse.ac.uk). AB is supported by a Clinical Research Training Fellowships (MR/V007254/1). DD is supported by Chest Heart and Stroke Scotland (19/53), Tenovus Scotland (G.18.01), and Friends of Anchor and Grampian NHS-Endowments. The Edinburgh Clinical Research Facilities, Edinburgh Imaging facility and Edinburgh Clinical Trials Unit are supported by the National Health Service Research Scotland through National Health Service Lothian Health Board. The Leeds Clinical Research Facilities are supported by the UK National Institute for Health Research (NIHR) via its Clinical Research Facility programme. The work at Cedars-Sinai Medical Center (the Los Angeles site) was supported in part by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission. The Chief Investigator and Edinburgh Clinical Trials Unit had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.Peer reviewedPostprin

    Association between pre-biologic T2-biomaker combinations and response to biologics in patients with severe asthma

    Get PDF
    Funding This study was conducted by the Observational and Pragmatic Research Institute (OPRI) Pte Ltd and was partially funded by Optimum Patient Care Global (OPCG) and AstraZeneca Ltd. No funding was received by the OPRI for its contribution. The International Severe Asthma Registry (ISAR) is operated by OPCG and co-funded by OPCG and AstraZenecaPeer reviewe

    Age-Dependent Maturation of Toll-Like Receptor-Mediated Cytokine Responses in Gambian Infants

    Get PDF
    The global burden of neonatal and infant mortality due to infection is staggering, particularly in resource-poor settings. Early childhood vaccination is one of the major interventions that can reduce this burden, but there are specific limitations to inducing effective immunity in early life, including impaired neonatal leukocyte production of Th1-polarizing cytokines to many stimuli. Characterizing the ontogeny of Toll-like receptor (TLR)-mediated innate immune responses in infants may shed light on susceptibility to infection in this vulnerable age group, and provide insights into TLR agonists as candidate adjuvants for improved neonatal vaccines. As little is known about the leukocyte responses of infants in resource-poor settings, we characterized production of Th1-, Th2-, and anti-inflammatory- cytokines in response to agonists of TLRs 1-9 in whole blood from 120 Gambian infants ranging from newborns (cord blood) to 12 months of age. Most of the TLR agonists induced TNFα, IL-1β, IL-6, and IL-10 in cord blood. The greatest TNFα responses were observed for TLR4, -5, and -8 agonists, the highest being the thiazoloquinoline CLO75 (TLR7/8) that also uniquely induced cord blood IFNγ production. For most agonists, TLR-mediated TNFα and IFNγ responses increased from birth to 1 month of age. TLR8 agonists also induced the greatest production of the Th1-polarizing cytokines TNFα and IFNγ throughout the first year of life, although the relative responses to the single TLR8 agonist and the combined TLR7/8 agonist changed with age. In contrast, IL-1β, IL-6, and IL-10 responses to most agonists were robust at birth and remained stable through 12 months of age. These observations provide fresh insights into the ontogeny of innate immunity in African children, and may inform development of age-specific adjuvanted vaccine formulations important for global health

    Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    Get PDF
    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species

    Elective surgery cancellations due to the COVID-19 pandemic: global predictive modelling to inform surgical recovery plans.

    Get PDF
    BACKGROUND: The COVID-19 pandemic has disrupted routine hospital services globally. This study estimated the total number of adult elective operations that would be cancelled worldwide during the 12 weeks of peak disruption due to COVID-19. METHODS: A global expert response study was conducted to elicit projections for the proportion of elective surgery that would be cancelled or postponed during the 12 weeks of peak disruption. A Bayesian β-regression model was used to estimate 12-week cancellation rates for 190 countries. Elective surgical case-mix data, stratified by specialty and indication (surgery for cancer versus benign disease), were determined. This case mix was applied to country-level surgical volumes. The 12-week cancellation rates were then applied to these figures to calculate the total number of cancelled operations. RESULTS: The best estimate was that 28 404 603 operations would be cancelled or postponed during the peak 12 weeks of disruption due to COVID-19 (2 367 050 operations per week). Most would be operations for benign disease (90·2 per cent, 25 638 922 of 28 404 603). The overall 12-week cancellation rate would be 72·3 per cent. Globally, 81·7 per cent of operations for benign conditions (25 638 922 of 31 378 062), 37·7 per cent of cancer operations (2 324 070 of 6 162 311) and 25·4 per cent of elective caesarean sections (441 611 of 1 735 483) would be cancelled or postponed. If countries increased their normal surgical volume by 20 per cent after the pandemic, it would take a median of 45 weeks to clear the backlog of operations resulting from COVID-19 disruption. CONCLUSION: A very large number of operations will be cancelled or postponed owing to disruption caused by COVID-19. Governments should mitigate against this major burden on patients by developing recovery plans and implementing strategies to restore surgical activity safely

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe
    corecore