66 research outputs found
Hansard as an Aid to Statutory Interpretation in Canadian Courts from 1999 to 2010
This thesis employs qualitative and quantitative methods to provide a comprehensive picture o f the judicial use o f Hansard as an extrinsic aid to statutory interpretation in the courts of Canada from 1999 to 2010. The qualitative portion of the thesis examines all Supreme Court of Canada judgments in 2010 that make reference to Hansard and Hansard-like materials. The findings are compared with the findings of Professor SteÌphane Beaulac, who studied the phenomenon in 1999. The quantitative portion ofthe research examines the prevalence and distribution ofjudgments that make reference to Hansard in the Courts throughout Canada from 1999 to 2010
Measurement of rare isotopologues of nitrous oxide by high-resolution multi-collector mass spectrometry
Rationale: Bulk and position-specific stable isotope characterization of nitrous oxide represents one of the most powerful tools for identifying its environmental sources and sinks. Constraining ^(14)N^(15)N^(18)O and ^(15)N^(14)N^(18)O will add two new dimensions to our ability to uniquely fingerprint N_2O sources.
Methods: We describe a technique to measure six singly and doubly substituted isotopic variants of N2O, constraining the values of ÎŽ^(15)N, ÎŽ^(18)O, â^(17)O, ^(15)N site preference, and the clumped isotopomers ^(14)N^(15)N^(18)O and ^(15)N^(14)N^(18)O. The technique uses a Thermo MAT 253 Ultra, a high-resolution multi-collector gas source isotope ratio mass spectrometer. It requires 8â10 hours per sample and ~10 micromoles or more of pure N_2O.
Results: We demonstrate the precision and accuracy of these measurements by analyzing N_2O brought to equilibrium in its position-specific and clumped isotopic composition by heating in the presence of a catalyst. Finally, an illustrative analysis of biogenic N_2O from a denitrifying bacterium suggests that its clumped isotopic composition is controlled by kinetic isotope effects in N_2O production.
Conclusions: We developed a method for measuring six isotopic variants of N_2O and tested it with analyses of biogenic N_2O. The added isotopic constraints provided by these measurements will enhance our ability to apportion N_2O sources
Measurement of rare isotopologues of nitrous oxide by high-resolution multi-collector mass spectrometry
Rationale: Bulk and position-specific stable isotope characterization of nitrous oxide represents one of the most powerful tools for identifying its environmental sources and sinks. Constraining ^(14)N^(15)N^(18)O and ^(15)N^(14)N^(18)O will add two new dimensions to our ability to uniquely fingerprint N_2O sources.
Methods: We describe a technique to measure six singly and doubly substituted isotopic variants of N2O, constraining the values of ÎŽ^(15)N, ÎŽ^(18)O, â^(17)O, ^(15)N site preference, and the clumped isotopomers ^(14)N^(15)N^(18)O and ^(15)N^(14)N^(18)O. The technique uses a Thermo MAT 253 Ultra, a high-resolution multi-collector gas source isotope ratio mass spectrometer. It requires 8â10 hours per sample and ~10 micromoles or more of pure N_2O.
Results: We demonstrate the precision and accuracy of these measurements by analyzing N_2O brought to equilibrium in its position-specific and clumped isotopic composition by heating in the presence of a catalyst. Finally, an illustrative analysis of biogenic N_2O from a denitrifying bacterium suggests that its clumped isotopic composition is controlled by kinetic isotope effects in N_2O production.
Conclusions: We developed a method for measuring six isotopic variants of N_2O and tested it with analyses of biogenic N_2O. The added isotopic constraints provided by these measurements will enhance our ability to apportion N_2O sources
DeepSee: Multidimensional Visualizations of Seabed Ecosystems
Scientists studying deep ocean microbial ecosystems use limited numbers of
sediment samples collected from the seafloor to characterize important
life-sustaining biogeochemical cycles in the environment. Yet conducting
fieldwork to sample these extreme remote environments is both expensive and
time consuming, requiring tools that enable scientists to explore the sampling
history of field sites and predict where taking new samples is likely to
maximize scientific return. We conducted a collaborative, user-centered design
study with a team of scientific researchers to develop DeepSee, an interactive
data workspace that visualizes 2D and 3D interpolations of biogeochemical and
microbial processes in context together with sediment sampling history overlaid
on 2D seafloor maps. Based on a field deployment and qualitative interviews, we
found that DeepSee increased the scientific return from limited sample sizes,
catalyzed new research workflows, reduced long-term costs of sharing data, and
supported teamwork and communication between team members with diverse research
goals.Comment: Accepted to CHI 2024. 16 pages, 7 figures, 2 tables. For a demo
video, see https://youtu.be/HJ4zbueJ9cs . For a live demo, visit
https://www.its.caltech.edu/~datavis/deepsee/ . The source code is available
at https://github.com/orphanlab/DeepSe
Peptidoglycan Production by an Insect-Bacterial Mosaic
Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes
Peptidoglycan Production by an Insect-Bacterial Mosaic
Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes
Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial
The safety and effectiveness of a continuous, day-and-night automated glycaemic control system using insulin and glucagon has not been shown in a free-living, home-use setting. We aimed to assess whether bihormonal bionic pancreas initialised only with body mass can safely reduce mean glycaemia and hypoglycaemia in adults with type 1 diabetes who were living at home and participating in their normal daily routines without restrictions on diet or physical activity
Autistic behavior in boys with fragile X syndrome: social approach and HPA-axis dysfunction
The primary goal of this study was to examine environmental and neuroendocrine factors that convey increased risk for elevated autistic behavior in boys with Fragile X syndrome (FXS). This study involves three related analyses: (1) examination of multiple dimensions of social approach behaviors and how they vary over time, (2) investigation of mean levels and modulation of salivary cortisol levels in response to social interaction, and (3) examination of the relationship of social approach and autistic behaviors to salivary cortisol. Poor social approach and elevated baseline and regulation cortisol are discernible traits that distinguish boys with FXS and ASD from boys with FXS only and from typically developing boys. In addition, blunted cortisol change is associated with increased severity of autistic behaviors only within the FXS and ASD group. Boys with FXS and ASD have distinct behavioral and neuroendocrine profiles that differentiate them from those with FXS alone and typically developing boys
Methane Clumped Isotopes: Progress and Potential for a New Isotopic Tracer
The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding petroleum systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (âclumped isotopesâ) are opening a valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. In general, clumped isotope measurements indicate plausible formation temperatures for abiotic, thermogenic, and microbial methane in many geological environments, which is encouraging for the further development of this measurement as a geothermometer, and as a tracer for the source of natural gas reservoirs and emissions. We also highlight, however, instances where clumped isotope derived temperatures are higher than expected, and discuss possible factors that could distort equilibrium formation temperature signals. In microbial methane from freshwater ecosystems, in particular, clumped isotope values appear to be controlled by kinetic effects, and may ultimately be useful to study methanogen metabolism
A many-analysts approach to the relation between religiosity and well-being
The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N=10,535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported ÎČ=0.120). For the second research question, this was the case for 65% of the teams (median reported ÎČ=0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates
- âŠ