146 research outputs found

    Crop Production and Global Warming

    Get PDF

    Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species

    Get PDF
    [EN] Graft union development in plants has been studied mainly by destructive methods such as histological studies. The aim of this work was to evaluate whether the chlorophyll fluorescence imaging (CFI) technique is sensitive enough to reflect changes at the cellular level in different Solanaceae grafted plants 30 d after grafting, when both grafted partners were well fused and strong enough in all plant combinations. The pepper cultivar 'Adige' was grafted onto different Capsicum spp. accessions typified with different compatibility degrees; eggplant was grafted on Solanum torvum and pepper homografts as compatible unions; pepper was grafted on S. torvum and on tomato as incompatible unions. 'Adige'/'Adige' and 'Adige'/pepper A25 showed a higher maximum quantum efficiency of PSII associated with higher values of actual quantum efficiency of PSII and photochemical quenching as well as with vascular regeneration across the graft interface. Our results highlighted that CFI changes reflected histological observations in grafted Solanaceae plants.This work was financed by INIA (Spain) through Project RTA2013-00022-C02-01 and the European Regional Development Fund (ERDF).Penella-Casañ, C.; Pina, A.; San Bautista Primo, A.; López Galarza, SV.; Calatayud, A. (2017). Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species. Photosynthetica. 55(4):671-678. https://doi.org/10.1007/s11099-017-0690-7S671678554Berger, S., Benediktyová, Z., Matouš, K., Bonfig, K., Mueller, M. J., Nedbal, L., & Roitsch, T. (2006). Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of Experimental Botany, 58(4), 797-806. doi:10.1093/jxb/erl208Bilger, W., & Björkman, O. (1991). Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta, 184(2), 226-234. doi:10.1007/bf00197951Calatayud, Á., Gorbe, E., Roca, D., & Martínez, P. F. (2008). Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environmental and Experimental Botany, 64(1), 65-74. doi:10.1016/j.envexpbot.2008.02.003Clearwater, M. J., Lowe, R. G., Hofstee, B. J., Barclay, C., Mandemaker, A. J., & Blattmann, P. (2004). Hydraulic conductance and rootstock effects in grafted vines of kiwifruit. Journal of Experimental Botany, 55(401), 1371-1382. doi:10.1093/jxb/erh137DELOIRE, A., & HÉBANT, C. (1982). Peroxidase Activity and Lignification at the Interface Between Stock and Scion of Compatible and Incompatible Grafts of Capsicum on Lycopersicum. Annals of Botany, 49(6), 887-891. doi:10.1093/oxfordjournals.aob.a086314Dhondt, S., Vanhaeren, H., Van Loo, D., Cnudde, V., & Inzé, D. (2010). Plant structure visualization by high-resolution X-ray computed tomography. Trends in Plant Science, 15(8), 419-422. doi:10.1016/j.tplants.2010.05.002Errea, P., Garay, L., & Marín, J. A. (2001). Early detection of graft incompatibility in apricot (Prunus armeniaca ) using in vitro techniques. Physiologia Plantarum, 112(1), 135-141. doi:10.1034/j.1399-3054.2001.1120118.xErrea, P. (1998). Implications of phenolic compounds in graft incompatibility in fruit tree species. Scientia Horticulturae, 74(3), 195-205. doi:10.1016/s0304-4238(98)00087-9Errea, P., Felipe, A., & Herrero, M. (1994). Graft establishment between compatible and incompatiblePrunusspp. Journal of Experimental Botany, 45(3), 393-401. doi:10.1093/jxb/45.3.393FERNANDEZ-GARCIA, N. (2004). Graft Union Formation in Tomato Plants: Peroxidase and Catalase Involvement. Annals of Botany, 93(1), 53-60. doi:10.1093/aob/mch014Fernández-García, N., Martínez, V., & Carvajal, M. (2004). Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science, 167(5), 616-622. doi:10.1002/jpln.200420416Flaishman, M. A., Loginovsky, K., Golobowich, S., & Lev-Yadun, S. (2008). Arabidopsis thaliana as a Model System for Graft Union Development in Homografts and Heterografts. Journal of Plant Growth Regulation, 27(3), 231-239. doi:10.1007/s00344-008-9050-yGenty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. doi:10.1016/s0304-4165(89)80016-9Goldschmidt, E. E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00727Guidi, L., Mori, S., Degl’Innocenti, E., & Pecchia, S. (2007). Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. Plant Physiology and Biochemistry, 45(10-11), 851-857. doi:10.1016/j.plaphy.2007.07.001Hudina, M., Orazem, P., Jakopic, J., & Stampar, F. (2014). The phenolic content and its involvement in the graft incompatibility process of various pear rootstocks (Pyrus communis L.). Journal of Plant Physiology, 171(5), 76-84. doi:10.1016/j.jplph.2013.10.022Irisarri, P., Binczycki, P., Errea, P., Martens, H. J., & Pina, A. (2015). Oxidative stress associated with rootstock–scion interactions in pear/quince combinations during early stages of graft development. Journal of Plant Physiology, 176, 25-35. doi:10.1016/j.jplph.2014.10.015Kawaguchi, M., Taji, A., Backhouse, D., & Oda, M. (2008). Anatomy and physiology of graft incompatibility in solanaceous plants. The Journal of Horticultural Science and Biotechnology, 83(5), 581-588. doi:10.1080/14620316.2008.11512427Mudge, K., Janick, J., Scofield, S., & Goldschmidt, E. E. (2009). A History of Grafting. Horticultural Reviews, 437-493. doi:10.1002/9780470593776.ch9�quist, G., & Chow, W. S. (1992). On the relationship between the quantum yield of Photosystem II electron transport, as determined by chlorophyll fluorescence and the quantum yield of CO2-dependent O2 evolution. Photosynthesis Research, 33(1), 51-62. doi:10.1007/bf00032982OXBOROUGH, K., & BAKER, N. R. (1997). An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. Plant, Cell and Environment, 20(12), 1473-1483. doi:10.1046/j.1365-3040.1997.d01-42.xPadgett, M., & Morrison, J. C. (1990). Changes in Grape Berry Exudates during Fruit Development and Their Effect on Mycelial Growth of Botrytis cinerea. Journal of the American Society for Horticultural Science, 115(2), 269-273. doi:10.21273/jashs.115.2.269Penella, C., Nebauer, S. G., Quiñones, A., San Bautista, A., López-Galarza, S., & Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science, 230, 12-22. doi:10.1016/j.plantsci.2014.10.007Penella, C., Nebauer, S. G., Bautista, A. S., López-Galarza, S., & Calatayud, Á. (2014). Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses. Journal of Plant Physiology, 171(10), 842-851. doi:10.1016/j.jplph.2014.01.013Penella, C., Nebauer, S. G., López-Galarza, S., SanBautista, A., Rodríguez-Burruezo, A., & Calatayud, A. (2014). Evaluation of some pepper genotypes as rootstocks in water stress conditions. Horticultural Science, 41(No. 4), 192-200. doi:10.17221/163/2013-hortsciPina, A., Errea, P., & Martens, H. J. (2012). Graft union formation and cell-to-cell communication via plasmodesmata in compatible and incompatible stem unions of Prunus spp. Scientia Horticulturae, 143, 144-150. doi:10.1016/j.scienta.2012.06.017Pina, A., Errea, P., Schulz, A., & Martens, H. J. (2009). Cell-to-cell transport through plasmodesmata in tree callus cultures. Tree Physiology, 29(6), 809-818. doi:10.1093/treephys/tpp025Quilliam, R. S., Swarbrick, P. J., Scholes, J. D., & Rolfe, S. A. (2005). Imaging photosynthesis in wounded leaves of Arabidopsis thaliana. Journal of Experimental Botany, 57(1), 55-69. doi:10.1093/jxb/erj039Rolfe, S. A., & Scholes, J. D. (2010). Chlorophyll fluorescence imaging of plant–pathogen interactions. Protoplasma, 247(3-4), 163-175. doi:10.1007/s00709-010-0203-zRouphael, Y., Schwarz, D., Krumbein, A., & Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127(2), 172-179. doi:10.1016/j.scienta.2010.09.001Sánchez-Rodríguez, E., Romero, L., & Ruiz, J. M. (2013). Role of Grafting in Resistance to Water Stress in Tomato Plants: Ammonia Production and Assimilation. Journal of Plant Growth Regulation, 32(4), 831-842. doi:10.1007/s00344-013-9348-2Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156-161. doi:10.1016/j.scienta.2010.09.011Schöning, U., & Kollmann, R. (1997). Phloem translocation in regeneratingin vitro- heterografts of different compatibility. Journal of Experimental Botany, 48(2), 289-295. doi:10.1093/jxb/48.2.289Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10(1-2), 51-62. doi:10.1007/bf00024185Tadeo, F. R., Gómez-Cadenas, A., Ben-Cheikh, W., Primo-Millo, E., & Talón, M. (1997). Gibberellin-ethylene interaction controls radial expansion in citrus roots. Planta, 202(3), 370-378. doi:10.1007/s004250050139Trinchera, A., Pandozy, G., Rinaldi, S., Crinò, P., Temperini, O., & Rea, E. (2013). Graft union formation in artichoke grafting onto wild and cultivated cardoon: An anatomical study. Journal of Plant Physiology, 170(18), 1569-1578. doi:10.1016/j.jplph.2013.06.018Wang, Y., & Kollmann, R. (1996). Vascular Differentiation in the Graft Union of in-vitro Grafts with Different Compatibility. — Structural and Functional Aspects. Journal of Plant Physiology, 147(5), 521-533. doi:10.1016/s0176-1617(96)80041-1Yin, H., Yan, B., Sun, J., Jia, P., Zhang, Z., Yan, X., … Liu, H. (2012). Graft-union development: a delicate process that involves cell–cell communication between scion and stock for local auxin accumulation. Journal of Experimental Botany, 63(11), 4219-4232. doi:10.1093/jxb/ers10

    Improving "color rendering" of LED lighting for the growth of lettuce

    Get PDF
    Light plays a vital role on the growth and development of plant. On the base of white light with high color rendering to the benefit of human survival and life, we proposed to improve “color rendering” of LED lighting for accelerating the growth of lettuce. Seven spectral LED lights were adopted to irradiate the lettuces under 150 μmol·m−2·s−1 for a 16 hd−1 photoperiod. The leaf area and number profiles, plant biomass, and photosynthetic rate under the as-prepared LED light treatments were investigated. We let the absorption spectrum of fresh leaf be the emission spectrum of ideal light and then evaluate the “color rendering” of as-prepared LED lights by the Pearson product-moment correlation coefficient and CIE chromaticity coordinates. Under the irradiation of red-yellow-blue light with high correlation coefficient of 0.587, the dry weights and leaf growth rate are 2-3 times as high as the sharp red-blue light. The optimized LED light for lettuce growth can be presumed to be limited to the angle (about 75°) between the vectors passed through the ideal light in the CIE chromaticity coordinates. These findings open up a new idea to assess and find the optimized LED light for plant growth

    Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes

    Get PDF
    Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light-emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental-controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates (Pn), maximal photochemical efficiency (Fv/Fm), electron transport for carbon fixation (JPSII) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2O2 accumulation by increasing the activities of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11) after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expression were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable down-regulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidantive enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL

    Nitric Oxide (NO) in Plant Heat Stress Tolerance: Current Knowledge and Perspectives

    Get PDF
    High temperature is one of the biggest abiotic stress challenges for agriculture. While, Nitric oxide (NO) is gaining increasing attention from plant science community due to its involvement in resistance to various plant stress conditions, its implications on heat stress tolerance is still unclear. Several lines of evidence indicate NO as a key signaling molecule in mediating various plant responses such as photosynthesis, oxidative defense, osmolyte accumulation, gene expression, and protein modifications under heat stress. Furthermore, the interactions of NO with other signaling molecules and phytohormones to attain heat tolerance have also been building up in recent years. Nevertheless, deep insights into the functional intermediaries or signal transduction components associated with NO-mediated heat stress signaling are imperative to uncover their involvement in plant hormone induced feed-back regulations, ROS/NO balance, and stress induced gene transcription. Although, progress is underway, much work remains to define the functional relevance of this molecule in plant heat tolerance. This review provides an overview on current status and discuss knowledge gaps in exploiting NO, thereby enhancing our understanding of the role of NO in plant heat tolerance

    Shading the Cut Stems of Tomato Plants Promotes in vivo Shoot Regeneration via Control of the Phenolic Metabolism

    No full text

    Seed Formation Promoted by Paclobutrazol, a Gibberellin Biosynthesis Inhibitor, in pat-2 Parthenocarpic Tomatoes

    No full text
    corecore