25 research outputs found

    The Effect of Pre-Oxidation on the Reducibility of Chromite Using Hydrogen: A Preliminary Study

    Get PDF
    The majority of ferrochrome (FeCr) is produced through the carbothermic reduction of chromite ore. In recent years, FeCr producers have been pressured to curve carbon emissions, necessitating the exploration of alternative smelting methods. The use of hydrogen as a chromite reductant only yields water as a by-product, preventing the formation of carbon monoxide (CO)-rich off-gas. It is however understood that only the Fe-oxide constituency of chromite can be metalized by hydrogen, whereas the chromium (Cr)-oxide constituency requires significantly higher temperatures to be metalized. Considering the alternation of chromite’s spinel structure when oxidized before traditional smelting procedures, the effects on its reducibility using hydrogen were investigated. Firstly, the effect of hydrogen availability was considered and shown to have a significant effect on Fe metallization. Subsequently, spinel alternation induced by pre-oxidation promoted the hydrogen-based reducibly of the Fe-oxide constituency, and up to 88.4% of the Fe-oxide constituency was metallized. The Cr-oxide constituency showed little to no reduction. The increase in Fe-oxide reducibility was ascribed to the formation of an exsolved Fe2O3-enriched sesquioxide phase, which was more susceptible to reduction when compared to Fe-oxides present in the chromite spinel. The extent of Fe metallization of the pre-oxidized chromite was comparable to that of unoxidized chromite under significantly milder reduction conditions.publishedVersio

    Six-year observations of aerosol optical properties at a southern African grassland savannah site

    Get PDF
    Atmospheric aerosols have a significant effect on earth's radiative budget, particularly on regional scales. This paper presents a similar to 6 year, in situ, ground level aerosol scattering and absorption dataset, measured at a background site strategically positioned to enable differentiation of the effect of anthropogenic, population density and open biomass burning activities on a regional scale. Relatively well-defined seasonal and diurnal patterns were observed for all the aerosol optical properties, i.e. scattering coefficient (sigma(SP)), absorption coefficient (sigma(AP)), single scattering albedo (omega(0)) and Angstrom exponent of scattering (sigma(SP)). These patterns were explained by considering southern African specific sources and metrological conditions. Using a receptor modelling method (auto-generated source maps) it was found that air masses that had higher sigma(SP), sigma(AP) and omega(0), and lower alpha(SP), if compared with the relatively clean background, passed over source regions with significant industrial or other anthropogenic activities, higher population density, re-circulation of polluted air masses and higher open biomass burning frequency. To quantify differences, four source regions were defined, i.e. Karoo, Kalahari, anti-cyclonic recirculation pattern and the industrial hub of South Africa. Air masses that had passed over the Karoo source region represented the cleanest regional background conditions, while air masses that had passed either over the industrial hub and/or the anti-cyclonic recirculation pattern represented the most significant anthropogenically impacted, as indicated by the aerosol optical properties. The omega(0) medians of air masses that had passed over the Karoo (0.80-0.86) were 9, 12 and 7% lower than in air masses that had passed over source regions with the highest omega(0) median, in the warmest/wettest, coldest, and driest, peak open biomass burning periods, respectively.Peer reviewe

    Statistical analysis of factors driving surface ozone variability over continental South Africa

    Get PDF
    Statistical relationships between surface ozone (O-3) concentration, precursor species and meteorological conditions in continental South Africa were examined from data obtained from measurement stations in north-eastern South Africa. Three multivariate statistical methods were applied in the investigation, i.e. multiple linear regression (MLR), principal component analysis (PCA) and -regression (PCR), and generalised additive model (GAM) analysis. The daily maximum 8-h moving average O-3 concentrations were considered in these statistical models (dependent variable). MLR models indicated that meteorology and precursor species concentrations are able to explain similar to 50% of the variability in daily maximum O-3 levels. MLR analysis revealed that atmospheric carbon monoxide (CO), temperature and relative humidity were the strongest factors affecting the daily O-3 variability. In summer, daily O-3 variances were mostly associated with relative humidity, while winter O-3 levels were mostly linked to temperature and CO. PCA indicated that CO, temperature and relative humidity were not strongly collinear. GAM also identified CO, temperature and relative humidity as the strongest factors affecting the daily variation of O-3. Partial residual plots found that temperature, radiation and nitrogen oxides most likely have a non-linear relationship with O-3,while the relationship with relative humidity and CO is probably linear. An inter-comparison between O-3 levels modelled with the three statistical models compared to measured O-3 concentrations showed that the GAM model offered a slight improvement over the MLR model. These findings emphasise the critical role of regional-scale O-3 precursors coupled with meteorological conditions in daily variances of O-3 levels in continental South Africa.Peer reviewe

    Seasonal influences on surface ozone variability in continental South Africa and implications for air quality

    Get PDF
    Although elevated surface ozone (O-3) concentrations are observed in many areas within southern Africa, few studies have investigated the regional atmospheric chemistry and dominant atmospheric processes driving surface O-3 formation in this region. Therefore, an assessment of comprehensive continuous surfaceO(3) measurements performed at four sites in continental South Africa was conducted. The regional O-3 problem was evident, with O-3 concentrations regularly exceeding the South African air quality standard limit, while O-3 levels were higher compared to other background sites in the Southern Hemisphere. The temporal O-3 patterns observed at the four sites resembled typical trends for O-3 in continental South Africa, with O-3 concentrations peaking in late winter and early spring. Increased O-3 concentrations in winter were indicative of increased emissions of O-3 precursors from household combustion and other low-level sources, while a spring maximum observed at all the sites was attributed to increased regional biomass burning. Source area maps of O-3 and CO indicated significantly higher O-3 and CO concentrations associated with air masses passing over a region with increased seasonal open biomass burning, which indicated CO associated with open biomass burning as a major source of O-3 in continental South Africa. A strong correlation between O-3 on CO was observed, while O-3 levels remained relatively constant or decreased with increasing NOx, which supports a VOC-limited regime. The instantaneous production rate of O-3 calculated at Welgegund indicated that similar to 40 % of O-3 production occurred in the VOC- limited regime. The relationship between O-3 and precursor species suggests that continental South Africa can be considered VOC limited, which can be attributed to high anthropogenic emissions of NOx in the interior of South Africa. The study indicated that the most effective emission control strategy to reduce 03 levels in continental South Africa should be CO and VOC reduction, mainly associated with household combustion and regional open biomass burning.Peer reviewe

    Spatial, temporal and source contribution assessments of black carbon over the northern interior of South Africa

    Get PDF
    After carbon dioxide (CO2) aerosol black carbon (BC) is considered to be the second most important contributor to global warming. This paper presents equivalent black carbon (eBC) (derived from an optical absorption method) data collected from three sites in the interior of South Africa where continuous measurements were conducted, i.e. Elandsfontein, Welgegund and Marikana, as well elemental carbon (EC) (determined by evolved carbon method) data at five sites where samples were collected once a month on a filter and analysed offline, i.e. Louis Trichardt, Skukuza, Vaal Triangle, Amersfoort and Botsalano. Analyses of eBC and EC spatial mass concentration patterns across the eight sites indicate that the mass concentrations in the South African interior are in general higher than what has been reported for the developed world and that different sources are likely to influence different sites. The mean eBC or EC mass concentrations for the background sites (Welgegund, Louis Trichardt, Skukuza, Botsalano) and sites influenced by industrial activities and/or nearby settlements (Elandsfontein, Marikana, Vaal Triangle and Amersfoort) ranged between 0.7 and 1.1, and 1.3 and 1.4 ae gm 3, respectively. Similar seasonal patterns were observed at all three sites where continuous measurement data were collected (Elandsfontein, Marikana and Welgegund), with the highest eBC mass concentrations measured from June to October, indicating contributions from household combustion in the cold winter months (June-August), as well as savannah and grassland fires during the dry season (May to mid-October). Diurnal patterns of eBC at Elandsfontein, Marikana and Welgegund indicated maximum concentrations in the early mornings and late evenings, and minima during daytime. From the patterns it could be deduced that for Marikana and Welgegund, household combustion, as well as savannah and grassland fires, were the most significant sources, respectively. Possible contributing sources were explored in greater detail for Elandsfontein, with five main sources being identified as coal-fired power stations, pyrometallurgical smelters, traffic, household combustion, as well as savannah and grassland fires. Industries on the Mpumalanga Highveld are often blamed for all forms of pollution, due to the NO2 hotspot over this area that is attributed to NOx emissions from industries and vehicle emissions from the Johannesburg-Pretoria megacity. However, a comparison of source strengths indicated that household combustion as well as savannah and grassland fires were the most significant sources of eBC, par-ticularly during winter and spring months, while coal-fired power stations, pyrometallurgical smelters and traffic contribute to eBC mass concentration levels year round.Peer reviewe

    Seasonality of the particle number concentration and size distribution : a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories

    Get PDF
    Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (N-tot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on N-tot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50% and 60% were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75 %) was required to document the diel cycle. Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (similar to 10(2) cm(-3)) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day-night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (similar to 10(3)-10(4) cm(-3)) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate N-tot (similar to 10(2)-10(3) cm(-3)). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of N-tot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either >50 nm or >100 nm) can represent from a few percent to almost all of N-tot, corresponding to seasonal medians on the order of similar to 10 to 1000 cm(-3), with seasonal patterns and a hierarchy of the site types broadly similar to those observed for N-tot. Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol-cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate.Peer reviewe

    Anthropogenic Sources Dominate Foliar Chromium Dust Deposition in a Mining-Based Urban Region of South Africa

    No full text
    Dust pollution can be severe in urban centers near mines and smelters. Identification of dust sources and assessing dust capturing plant morphological traits may help address the problem. A chromium (Cr) mining and ferrochrome smelting region in Sekhukhuneland, South Africa, was investigated to identify the sources of Cr in soil and plant leaf surfaces and to evaluate the association between Cr sources and plant morphology. Combinations of bi- and multivariate statistical analysis techniques were applied. Non-significant relation between Cr quantities in surface soil and on leaf surfaces suggested negligible Cr dust contribution from soil to leaves. Association among Cr, Fe, Mg, Al, and Si levels on leaf surfaces confirmed their shared origin, possibly from chromite containing dust dispersed by mines, smelters, roads, and tailings. Both plant morphology and Cr sources (number and proximity to mines and roads) conjointly determined Cr dust deposition on leaf surfaces. Air mass movement patterns further identified local polluters, i.e., mines, ferrochrome smelters, and roads, as dominant dust sources in the region. Common plant species showed Cr dust adhesion favouring traits (plant tallness, larger leaf area, dense epicuticular wax structures, and larger stomata) and projected dust mitigation prospects for Sekhukhuneland
    corecore