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ABSTRACT
Statistical relationships between surface ozone (O3) concentration,
precursor species and meteorological conditions in continental
South Africa were examined from data obtained frommeasurement
stations in north-eastern South Africa. Three multivariate statistical
methods were applied in the investigation, i.e. multiple linear
regression (MLR), principal component analysis (PCA) and –regres-
sion (PCR), and generalised additive model (GAM) analysis. The daily
maximum 8-h moving average O3 concentrations were considered
in these statistical models (dependent variable). MLR models indi-
cated that meteorology and precursor species concentrations are
able to explain ~50% of the variability in daily maximum O3 levels.
MLR analysis revealed that atmospheric carbon monoxide (CO),
temperature and relative humidity were the strongest factors
affecting the daily O3 variability. In summer, daily O3 variances
were mostly associated with relative humidity, while winter
O3 levels were mostly linked to temperature and CO. PCA indicated
that CO, temperature and relative humidity were not strongly
collinear. GAM also identified CO, temperature and relative humid-
ity as the strongest factors affecting the daily variation of O3. Partial
residual plots found that temperature, radiation and nitrogen oxi-
des most likely have a non-linear relationship with O3,while the
relationship with relative humidity and CO is probably linear. An
inter-comparison between O3 levels modelled with the three sta-
tistical models compared to measured O3 concentrations showed
that the GAM model offered a slight improvement over the MLR
model. These findings emphasise the critical role of regional-scale
O3 precursors coupled with meteorological conditions in daily var-
iances of O3 levels in continental South Africa.
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1. Introduction

Surface O3 is a secondary pollutant, which is considered a relatively short-lived (lifetime
ranging between days to weeks) greenhouse gas (Ordonez et al. 2005). In general, high
surface O3 concentrations are a concern because of its detrimental impacts on human
health and ecosystem functioning (NRC 2008). The potential for O3 damage to plants is,
especially, a concern when agricultural yields are reduced, which threatens the food
security and economies of countries that rely strongly on agricultural production.
However, an important consequence of plant damage caused by increased O3 levels
relate to the reduced removal of CO2 in the atmosphere and thereby O3 also indirectly
contributes to climate change. In addition, tropospheric O3 can also affect new particle
formation in the atmosphere (e.g. Mikkonen et al. 2011), which also impacts climate
change directly (e.g. scattering) and indirectly (e.g. cloud formation).
O3 in the troposphere is produced by the photochemical oxidation of nitrogen dioxide
(NO2):

NO2 þ hν ! NOþ O (1:1)

Oþ O2 þM ! O3 þM (1:2)

The photolytically formed O3 reacts with NO to regenerate NO2:

O3 þ NO ! NO2 þ O2 (1:3)

This is a continuous process termed the NOx-dependent photo-stationary state (PSS),
which results in no net O3 production (Seinfeld and Pandis 2006; Awang et al. 2018).
However, when this PSS is altered in the presence of carbon monoxide (CO) and volatile
organic compounds (VOCs), net O3 production occurs. High O3 levels are not only a result
of chemistry associated with precursor emissions but are also related to meteorological
conditions conducive to the formation, transport and removal of air pollutants
(Melkonyan and Kuttler 2012). Local meteorological parameters, such as temperature,
relative humidity, sunlight, and wind speed and -direction play a significant role in O3

variability (Ooka et al. 2011; Tsakiri and Zurbenko 2011). These multiple factors influencing
surface O3 levels have confounded the effect of individual parameters on ground-level O3,
thereby making it challenging to separate the impacts of local emissions, meteorology
and transport on surface O3 concentrations (Gorai et al. 2015).

Statistical models relating ambient O3 concentrations to meteorological variables have
been developed for the purpose of the prediction of O3 concentrations, the estimation of
long-term O3 trends, as well as explaining the underlying chemical and meteorological
processes affecting O3 concentrations (Thompson et al. 2001). Some of these statistical
methods were critically reviewed by Thompson et al. (2001), which included regression-
based methods (Fiore et al. 1998; Abdul-Wahab et al. 2005; Ooka et al. 2011), time-series
filtering (Rao and Zurbenko 1994; Milanchus et al. 1998; Tsakiri and Zurbenko 2011),
multivariate statistical techniques such as cluster analysis and principal component
analysis (PCA) (Abdul-Wahab et al. 2005; Melkonyan and Kuttler 2012; Dominick et al.
2012; Awang et al. 2015), as well as neural networks (Comrie 1997; Gardner and Dorling
1998, 2000; Guardani et al. 2003). The most widely used statistical technique to relate O3

concentrations to influencing factors is linear regression, because of its user-friendliness
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and straightforward interpretability (Comrie 1997; Cardelino et al. 2001). However, the
relationship between O3 levels and certain meteorological effects is typically non-linear,
while some explanatory variables are collinear (Neter et al. 1996). Although non-linear
regression models for O3 forecasting have been developed (Bloomfield et al. 1996;
Thompson et al. 2001; Lin and Cobourn 2007), these models are difficult to interpret
and explain in summarized form to the public (Thompson et al. 2001; Pearce et al. 2011).
However, generalized additive models (GAM), which are an extension of linear regression,
are able to handle non-linear associations between atmospheric parameters and are
simpler to interpret or justify (Hastie and Tibshirani 1990). Melkonyan and Kuttler (2012)
suggested that PCA is the most appropriate method to identify multivariate relationships
between pollutants and meteorological factors.

Southern Africa is the largest industrialized region in Africa, where high O3 levels may
be expected due to the high rate of precursor emissions from anthropogenic sources,
coupled with the abundance of sunlight throughout the year (Zunckel et al., 2006). In
addition, this region is also influenced by large-scale open biomass burning, which is
considered to be a significant source of O3 precursor species. Laban et al. (2018) indicated
that CO emissions associated with biomass burning (household combustion and open
biomass burning) contributed significantly to high O3 levels, while it was also indicated
that large parts of the regional background in South Africa can be considered VOC-
limited. Although the temporal and spatial variability is generally attributed to meteor-
ological conditions and/or precursor emissions, the response of O3 with respect to
changing emission levels and meteorological fluctuations is not well understood for this
region (Laban et al. 2018). Therefore, the aim of this study was to utilize statistical models
to distinguish the complex effects of meteorological parameters and precursor emissions
influencing O3 chemistry and concentrations in continental South Africa, as well as to
quantify the strength of association of O3 with these factors in order to better understand
the underlying mechanisms responsible for the changes in surface O3 levels in this region.

2. Material and methods

2.1. Description of the study area

Data from continuous in-situ measurements conducted at four measurement sites (indi-
cated in Table 1) in the north-eastern interior of South Africa were obtained for statistical
analysis. This region is the largest industrial area in South Africa, with substantial

Table 1. Measurement stations from which meteorological- and air pollutant data utilized for
statistical analysis were obtained.
Measurement
site

Latitude Longitude (deci-
mal degrees) Elevation (m) a.s.l.

Measurement
period Site description

Welgegund 26.57° S 26.94° E 1480 May 2010-Dec 2015 Rural, background
Botsalano 25.54° S 25.75° E 1420 Jul 2006-Jan 2008 Rural, background
Marikana 25.70° S 27.48° E 1170 Feb 2008-Apr 2010 Rural, residential,

industrial
Elandsfontein 26.25° S 29.42° E 1750 Feb 2009-Jan 2011 Rural, industrial
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emissions of atmospheric pollutants from anthropogenic activities, e.g. industries, domes-
tic fuel burning and vehicles (Lourens et al. 2011, 2012). A combination of meteorology
and anthropogenic activities has amplified pollution levels within the region. Detailed
descriptions of the locations of these four measurement stations and their surroundings
are provided in Laban et al. (2018).

Measurements were conducted from 20 July 2006 until 5 February 2008 at Botsalano,
8 February 2008 to 16 May 2010 at Marikana, 20 May 2010 to 31 December 2015 at
Welgegund and 11 February 2009 to 31 December 2010 at Elandsfontein. These four
measurement stations represent high quality, high resolution data, which include com-
prehensive continuous measurements of aerosols, trace gases and meteorological para-
meters. Data quality was ensured through regular site visits, while data collected from
these four sites were subjected to meticulous cleaning (e.g. excluding measurements
recorded during calibrations and maintenance). The data were available as 15-min
averages.

2.2. Data treatment

Respiratory symptoms have been found to be associated with the daily maximum of the
eight-hour average O3 concentration (Schlink et al. 2006). Therefore, the South African
National Ambient Air Quality Standards and other international standards, designed to
protect human health, are based on this metric. Consequently, the daily maximum
8-h moving average O3 concentrations (daily max 8-h O3) were utilized in the statistical
analysis (dependent variable). The choice of input (independent) variables for the models
was based on literature (Dueñas et al. 2002; Ordonez et al. 2005; Abdul-Wahab et al. 2005;
Camalier et al. 2007; Awang et al. 2015), as well as exploratory analysis and a general
understanding of O3-related processes (Equation 1.1–1.3). Daytime (11:00–17:00 local
time) daily average concentrations were calculated for NO2, NO and CO, while daily
mean values for zonal (u) wind component, meridional (v) wind component, relative
humidity and solar radiation were determined. Daily maximum temperatures were
included in models. Only daytime measurements were used in the statistical models,
since the boundary layer is deep and well mixed during this period, as well as to exclude
night-time chemistry (Cooper et al. 2012). Other variables such as soil moisture and
precipitation, as well as SO2- and H2S levels were also explored, but were found to have
only a minor influence on daily max 8-h O3. Since the O3 data utilized in this study were
normally distributed, it was not necessary to log-transform the original data to satisfy
parametric test assumptions.

Exploratory descriptive statistics (calculation of mean, median, minimum, maximum
and standard deviation) were employed prior to the statistical analyses in order to gain
a general understanding of meteorological, O3, NOx and CO variations at the measure-
ment locations. Correlation coefficients were also calculated as a measure of the linear
relationship between O3 and each variable.

2.3. Statistical methods

Three different statistical methods, namely MLR, PCA and GAM were used to statistically
evaluate the datasets. A separate model was built for each measurement site and used to

4 T. L. LABAN ET AL.



investigate the influence of meteorological and precursor species (indicated in section
2.2.) variability on daily max 8-h O3 at each site. The statistical calculations were performed
using MATLAB version R2013a or R software environment (R Development Core Team
2009).

2.3.1. Multiple linear regression (MLR)
Multiple linear regression modelling was used to relate O3 concentrations (daily max 8-
h O3) to meteorological and pollutant factors, as well as the relative contribution of each
of these factors. The general equation for an MLR model is given by

Yi ¼ β0 þ β1Xi1 þ β2Xi2 þ . . .þ βpXip þ εi (1)

where Y is the response variable, X1; X2; . . . ; Xp are the exploratory variables, β1; β2; . . . ; βp
are the regression coefficients, and ε is an error term or residual value associated with
deviation between the observed value of Y and the predicted Y value from the regression
equation. The ordinary least squares procedure is the standard method to estimate the
coefficients in the MLR equation. With this method, the regression procedure is based on
finding coefficient values that minimize the sum of the squares of the residuals. A forward
stepwise regression procedure was used in which each variable was added individually to
the starting model according to their statistical significance and overall increase in the
explanation capability of the model. This was done to remove the least important
predictor variables and to obtain the optimal combination of variables depending on
the statistical indices.

The strength of relationship between each independent variable and O3 was evaluated
in terms of the magnitude of the t-statistic and associated p-value for statistical signifi-
cance. The performance of the model was evaluated with R2, adjusted R2 and root mean
square error (RMSE). The adjusted-R2 is an R2 measure that does not increase unless the
new variables have additional predictive capability (unlike R2 that increases when vari-
ables are added to the equation even when the new variables have no real predictive
capability). The optimum MLR models considered had the largest R2 and adjusted R2, and
smallest RMSE from a minimum number of independent variables. The main assumptions
of the model are true underlying linearity, residuals are mutually independent with
constant variance (homoscedasticity), and residuals are normally distributed (Ordonez
et al. 2005). Multicollinearity in the regression model was verified by examining the
variance inflation factor (VIF) for each of the predictor variables (Abdul-Wahab et al.
2005; Otero et al. 2016).

2.3.2. Principal component analysis (PCA) and -regression (PCR)
Parameters such as solar radiation, temperature and relative humidity are related proper-
ties, which could be inessential in MLR. PCA is a statistical procedure that uses an
orthogonal transformation to convert a set of interrelated variables into a set of uncorre-
lated variables, i.e. principal components. Therefore, PCA is able to separate interrelation-
ships (collinearity) into statistically independent basic components (Abdul-Wahab et al.
2005) and determine the most important uncorrelated variables. Each principal compo-
nent is a linear combination of the original predictor variables that account for the
variance in the data. All the principal components are orthogonal to each other, which
implies that they are uncorrelated to each other. The first principal component is
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calculated such that it accounts for the highest possible variance in the dataset, followed
by the concurrent components. Since the variables are measured in different units, it is
necessary to standardize data before a principal component analysis is carried out, which
involves scaling every variable to have a mean equal to 0 and a standard deviation equal
to 1. The principal component model presents the ith principal component as a linear
function of the p measured variables as expressed in Eq. (2) below:

Zi ¼ ai1X1 þ ai2X2 þ ai2X2 þ . . .þ aipXp (2)

where “Z” is the principal component, “a” is the component loading, and “X” is the
measured variable. The full set of principal components is as large as the original set of
variables, but it is common for the sum of the variances of the first few principal
components to exceed 80% of the total variance of the original data. By examining
plots of these few new variables, researchers often develop a deeper understanding of
the driving forces that generated the original data.

PCA was first applied to the original independent variables to transform these variables
into an equal number of principal components. Only those principal components with an
eigenvector greater than 1 were retained (according to the Kaiser criterion), which were
then subjected to Varimax rotation to maximize the loading of a predictor variable on one
component (Abdul-Wahab et al. 2005). Since the eigenvectors are the correlation of the
component variables with the original variables, they comprise coefficients (loadings) that
indicate the relative weight of each variable in the component, which is important, since
they represent the extent of the correlation between the measured variable and the
principal components. Variables that load highly on a specific principal component form
a related group.

PCR is a combination of PCA and MLR (Awang et al. 2015), where the outputs from the
PCA are used as potential predictors in order to improve the original MLR model (Abdul-
Wahab et al. 2005; Awang et al. 2015). Either the original independent variables associated
with each of the principal components with high loadings (Abdul-Wahab et al. 2005) or
the principal components with high loadings (Awang et al. 2015) are selected to be
included in the regression equation.

2.3.3. Generalized additive models (GAMs)
GAMs extend traditional linear models by allowing for an alternative distribution for the
modelling of response variables that have a non-normal error distribution. In addition,
GAMs do not force dependent variables to be linearly related to independent variables as
in MLR, and recognize that the relationship of some explanatory variables (e.g. daily
temperature) and the response variable (i.e. ozone in this study) may not be linear
(Gardner and Dorling 2000). In GAMs, the response variable depends additively on
unknown smoothing functions of the individual predictors that can be (linear) parametric
or non-parametric (Hastie and Tibshirani 1990). The GAM model equation developed by
Hastie and Tibshirani (1990) is given by

g E Yið Þð Þ ¼ β0 þ s1ðXi1Þ þ s2ðXi2Þ þ . . .þ spðXipÞ þ εi (3)

where Yi is the response variable, E Yið Þ denotes the expected value and g �ð Þ denotes the
link function that links the expected value to the predictor variables Xi1; . . . ; Xip, β0 is an
intercept and εi is an i.i.d. random error. For the purposes of the analysis performed in this
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study, the link function chosen was the identify transformation g E Yið Þð Þ ¼ E Yið Þ:The terms
s1 �ð Þ; s2 �ð Þ; . . . ; sp �ð Þ are smooth functions that are estimated in a nonparametric fashion
(Hastie and Tibshirani 1990). We can estimate these smooth relationships simultaneously
from the data and then predict g E Yið Þð Þ by simply adding up these functions. The
estimated smooth functions sk are the analogues of the coefficients βkin linear regression.
In contrast to MLR, an additive regression is done by using a back-fitting procedure and
thereby controlling the effects of the other predictors. GAM is able to identify covariates,
Xk relevant to Y for a large set of potential factors (Hayn et al. 2009), while it does not
require any prior knowledge on the underlying relationship between Y and its covariates.
The latter can be obtained through separate partial residual plots, which allow visualiza-
tion of the relationships between each variable Xk and the response variable, Y , after
accounting for the effects of the other explanatory variables in the model.

Smooth parameters were automatically selected in the “mgcv” package (Wood 2017) in
the R software environment used in this study, which is based on maximum probability
methods that minimize the Akaike information criterion (AIC) score. The AIC measures the
goodness-of-fit of the model in such a manner that the final model selected has the
smallest AIC. The models were also evaluated with R2 values and generalized cross-
validation (GCV) scores (estimate of the prediction error).

3. Results and discussion

3.1. Exploratory analysis

3.1.1. Descriptive statistics
As indicated in Section 2.2, descriptive statistics were performed prior to the statistical
analyses in order to gain a general understanding of meteorological, O3, NOx and CO
variations at the measurement locations, which are presented in Table 2. It is evident that
Elandsfontein and Marikana are the more polluted sites, as indicated by higher NO2, NO
and CO median values, whereas Botsalano had the lowest median values for NO2, NO and
CO. Note that O3 concentrations are similar at all sites, even though Botsalano and
Welgegund are considered regional background sites. The regional problem associated
with O3 in southern Africa was indicated by Laban et al. (2018). The large standard
deviations of NO2 and NO concentrations can be attributed to occasional high pollution
events.

3.1.2. Calculation of correlation coefficients
In Table 3, Pearson correlation coefficients (r) relating O3 concentration with individual
atmospheric parameters at the four measurement locations are presented. It is evident that
O3 has a positive correlation with temperature and global radiation, while it is negatively
correlated with relative humidity. A relatively strong positive correlation with CO was
observed at Welgegund, Botsalano and Marikana, with NO2 and NO correlations with O3

almost negligible at these sites due to the time scale. The correlations with u and v wind
components are also weak, as given by their low correlation coefficients. Exploratory
Pearson correlations indicate that variability in O3 levels is in general associated (positively
or negatively) with CO (r(O3,CO) = 0.3 to 0.6), relative humidity (r(O3, RH) = −0.2 to −0.5) and
temperature (r(O3, T) = 0.2 to 0.5). The significance of CO on O3 levels in this north-eastern
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interior of South Africa was indicated by Laban et al. (2018). The relative significance of CO,
relative humidity and temperature highlighted with these correlations is further explored in
subsequent sections throughmore advanced statistical methods, as indicated in section 2.3.

3.2. Multiple linear regression (MLR) analysis

A summary of the contributions of independent variables to variation of the dependent
variable (daily max 8-h O3) included in the optimum MLR models obtained for each of the
measurement sites is presented in Table 4. VIF values ranging between 1.00 and 2.00 for
all the independent variables indicated moderate collinearity, which did not contribute to
unstable parameter estimates or the necessity to remove any independent variables from

Table 2. Descriptive statistics of the daily summaries of the key variables used in the study.
Time scale Statistics Welgegund Botsalano Marikana Elandsfontein

[O3] Daily 8-h max Mean 47 47 50 48
ppb Median 46 48 48 47

Min 8 21 14 11
Max 114 73 113 102
Std Dev 11 9 16 16

[NO2] Daily average Mean 2.0 1.5 5.7 13.2
ppb Median 1.4 1.3 4.8 10.8

Min −0.4 0.2 0.0 0.2
Max 21.2 11.4 20.9 68.3
Std Dev 1.9 1.0 3.3 9.7

[NO] Daily average Mean 0.4 0.3 2.8 4.5
ppb Median 0.2 0.2 1.6 2.6

Min −0.4 −0.1 −0.3 0.1
Max 6.9 5.3 52.8 42.5
Std Dev 0.7 0.4 3.8 5.4

[CO] Daily average Mean 126 118 197
ppb Median 116 109 181

Min 23 57 85
Max 412 308 591
Std Dev 45 35 68

Solar Radiation Daily average Mean 508 508 462 522
W/m2 Median 490 504 458 541

Min 14 31 24 3
Max 871 835 884 1005
Std Dev 154 137 146 156

Temperature Daily maximum Mean 24 25 26 21
oC Median 25 26 27 21

Min 5 8 10 6
Max 38 36 37 30
Std Dev 5 5 5 4

Relative Humidity Daily average Mean 42 40 49 52
% Median 40 38 48 53

Min 6 7 10 9
Max 100 95 100 96
Std Dev 18 19 18 18

Zonal (u) wind Daily average Mean 0.7 −2.8 0.5 0.4
component Median 1.1 −3.3 0.5 0.9
(m/s) Min −13.1 −13.4 −6.9 −9.1

Max 12.9 10.0 8.0 8.7
Std Dev 3.6 3.9 2.4 3.2

Meridional (v) wind Daily average Mean −0.8 −0.6 −0.3 −0.8
component Median −0.8 −0.6 −0.2 −0.7
(m/s) Min −10.4 −7.4 −5.7 −10.0

Max 10.9 6.3 5.9 5.2
Std Dev 2.7 1.9 1.4 2.4
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the models. Regression analysis explained approximately 50% of the variability (R2 ≈ 0.5)
of daily max 8-h O3 concentrations at Welgegund, Botsalano and Marikana, with lower R2

(0.261) at Elandsfontein attributed to CO not measured at this site and not included in
the MLR.

From Table 4, it is evident that CO, T and RH make the most significant contributions to
the variance in daily max 8-h O3 at Welgegund, Botsalano and Marikana as indicated by
the magnitude of the t-statistics. In the absence of CO measurements at Elandsfontein, RH
and NO predominantly contributed to variances in daily max 8-h O3, while notable
contributions are also made by NO levels at Welgegund. A positive regression coefficient
associated with temperature is expected due to the photochemical production of O3

(Equations 1.1–1.3). In addition, evaporative emissions of anthropogenic VOCs increase at
high temperatures (Ordonez et al. 2005; Jaars et al. 2014), which could favour O3 forma-
tion as previously mentioned. Relative humidity had a negative regression coefficient and
a significant t-statistic at three of the sites, which indicate that low relative humidity is
associated with high daily max 8-h O3. This influence of relative humidity on O3 variances
suggests that atmospheric wet conditions can affect O3 production and loss, which will be
explored later in this paper. Surprisingly, the contribution of relative humidity to O3

variation was similar to that of temperature at Welgegund, while it had the most
significant contribution at Elandsfontein (in the absence of any CO measurements). CO
levels have the highest contribution to variations in daily max 8-h O3 at Welgegund and
Botsalano, i.e. the two regional background sites, while it had the second highest
contribution at the industrialized Marikana site. Laban et al. (2018) indicated that CO
emissions associated with regional open biomass burning, as well as household combus-
tion for space heating and cooking, contributed significantly to O3 levels in the interior of
southern Africa. Negative regression coefficients associated with NO at Welgegund and
Elandsfontein can be attributed to O3 titration in the presence of high NO levels
(Equation 1.3).

Since O3 has strong seasonal variation, MLR analysis was also performed for each
season: winter (JJA), spring (SON), summer (DJF) and autumn (MAM) in order to evaluate

Table 3. Pearson correlation coefficient (r) for the different variables with their associated p-values (P)
for data from the four sites.

Daily 8-h max O3 (ppb)

Welgegund Botsalano Marikana Elandsfontein

Daily average NO2 (ppb) r 0.113 0.061 0.128 −0.096
P 0.000 0.197 0.001 0.018

Daily average NO (ppb) r −0.077 −0.141 −0.026 −0.211
P 0.001 0.003 0.508 0.000

Daily average CO (ppb) r 0.554 0.543 0.330
P 0.000 0.000 0.000

Daily average radiation (W/m2) r 0.204 0.324 0.290 0.237
P 0.000 0.000 0.000 0.000

Daily maximum temp (oC) r 0.374 0.518 0.434 0.207
P 0.000 0.000 0.000 0.000

Daily average relative humidity (%) r −0.428 −0.242 −0.486 −0.451
P 0.000 0.000 0.000 0.000

Zonal (u) wind component (m/s) r −0.002 −0.094 0.074 0.079
P 0.921 0.033 0.042 0.052

Meridional (v) wind component (m/s) r −0.167 −0.253 −0.083 −0.070
P 0.000 0.000 0.023 0.085
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the major factors driving O3 variability during different seasons. Maximum O3 concentra-
tions generally occur in late winter and spring (August–November) for continental south-
ern Africa (Zunckel et al., 2004; Combrink et al. 1995; Diab et al. 2004). In Table 5, the
independent variables with the most significant contributions (i.e. highest t-statistic
values in the optimum model) to O3 variability for different seasons are presented for
each site.

CO makes the highest contribution to the variance in daily max 8-h O3 during all the
seasons at Botsalano, during autumn, winter and spring at Welgegund, as well as during
spring (second highest in winter) at Marikana, which signifies the influence of CO levels on
O3 concentrations in continental South Africa. The seasonal pattern of CO is also reflected
in the seasonal variations of contributing factors to O3 variability as indicated by a less
important influence of CO levels on the variance in O3 during summer at Welgegund and
Marikana. Increased CO emissions in this region are associated with increased household
combustion and open biomass burning during winter and spring (Laban et al. 2018). This
is also indicated by increased contributions of NO and NO2 to O3 variances at Welgegund
and Marikana during summer, i.e. increased O3 titration/formation mainly associated with
NO and NO2 levels (Equation 1.1–1.3). CO has the highest influence on variation O3

throughout the year at Botsalano, which can be ascribed to the site being more removed
from source regions compared to Welgegund. The important influence of relative humid-
ity on O3 levels is also apparent, as indicated by increases in its contribution to O3

variances during months coinciding with the wet season, i.e. mid-October to mid-May
(mostly summer and autumn). The wet season is also characterized by lower concentra-
tions of air pollutants (and O3 precursors) due to wet deposition. Daily maximum tem-
perature remains an important contributor to variance in daily max 8-h O3, except during
summer at Welgegund, Botsalano and Marikana. This can be attributed to relatively
constant higher temperatures occurring during summer, with O3 variability associated
with other influencing factors, e.g. relative humidity. In the absence of CO measurements
at Elandsfontein, daily maximum temperature contributes most significantly to O3

Table 5. Most important explanatory variables for daily max 8-h O3 for each
season (ranked in decreasing order of importance as given by the magnitude of
their t-statistic).

Summer Autumn Winter Spring

WELGEGUND NO CO CO CO
NO2 RH NO NO
RH NO T T
CO T u v
Rad RH

BOTSALANO CO CO CO CO
RH T T NO

RH Rad
T

MARIKANA RH NO2 T CO
NO2 NO CO T
NO RH
v T

u
v

ELANDSFONTEIN T T NO T
NO NO2 NO2

RH T Rad
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variability at Elandsfontein on a seasonal scale, which can be attributed to the influence of
temperature on the vertical mixing of tall stack emissions of power plants (Ordonez et al.
2005). The highest contribution of NO on O3 variance at Elandsfontein in winter can be
attributed to more pronounced inversion layers, as well as increased household combus-
tion for space heating and cooking.

3.3. Principal component analysis (PCA)

PCA revealed four principal components (factors) with eigenvalues greater than 1 at each
of the sites, which explained approximately 80% of the variation in the data. Only these
four factors (labelled Factor 1, Factor 2, Factor 3 and Factor 4) were subjected to Varimax
rotation, which are presented with their respective loadings, eigenvalues and variances in
Table 6. Factor loadings ≥0.5 (or close to 0.5) were considered significant, i.e. strongly
correlated within each principal component.

Similar factor loadings were determined for each of the four principal components
identified for each site, i.e. a factor with high loadings of T and Rad, a factor with high
loadings of NO and NO2 and a factor with a high loading of RH. A factor with a high
loading of CO was determined at Welgegund, Botsalano and Marikana, while one factor
was highly loaded with the wind direction vectors at Elandsfontein where CO was not
measured. Therefore, PCA indicated that the predominant factors identified by MLR
driving variances in daily max 8-h O3, i.e. CO, T and RH (as well as NO levels in certain
instances) are not inter-correlated. Collinearity is expected between T and radiation, as
well as NO and NO2 as revealed by PCA. In addition, Factor 1 at Marikana with high
loadings of CO and NO2 (and NO) is indicative of the influence of household combustion
at this site, as indicated by Venter et al. (2012). Furthermore, the correlation between NO2,
NO and CO at Welgegund in Factor 1 also reflects the influence of similar sources of these
species at Welgegund and signifies that Welgegund lies in a region between a NOx- and
VOC-limited O3 production regime, as indicated by Laban et al. (2018). CO is also strongly
correlated to meridional wind vector in Factor 4 at the regional background site
Welgegund, which can be attributed the regional transport of CO emissions.
Welgegund is influenced by the major source regions in the interior of South Africa and
a relatively clean background sector to the west (Tiitta et al. 2014; Jaars et al. 2014). In
addition, Welgegund is also impacted on by regional biomass burning, contributing to
increased CO emissions (Vakkari et al. 2013). In contrast to Welgegund, CO at Botsalano is
not correlated to NO and NO2 and is the only major loading in Factor 4 at this site.

3.4. Generalized additive model (GAM) analysis

Given the complex and non-linear chemistry of O3 (NRC 1991), the datasets were also
statistically analysed with GAM. A summary of the optimum (highest R2 and lowest AIC)
GAM models is shown in Table 7. According to the F-statistics of the optimum models
obtained with GAM, RH and CO make the highest contributions to variances in O3

concentrations Welgegund, Botsalano and Marikana, with T and NO also contributing to
O3 variances at these sites. NO, RH and T contributed to O3 variability at Elandsfontein
where no CO measurements were conducted. These results correspond to the most
significant independent variables contributing to variance in O3 levels indicated by MLR.
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Table 6. Factor loadings after PCA followed by Varimax rotation at the four measurement sites.
Loadings ≥ 0.5 (or close to 0.5) are indicated in bold.

Rotated principal component loadings

Welgegund Factor 1 Factor 2 Factor 3 Factor 4

T (oC) −0.060 0.640 −0.012 −0.215
Rad (W/m2) 0.060 0.728 −0.031 0.166
RH (%) −0.132 −0.076 0.755 −0.035
u (m/s) −0.274 −0.028 −0.549 0.020
v (m/s) 0.145 −0.089 −0.157 0.802
NO2 (ppb) 0.637 −0.093 −0.020 −0.052
NO (ppb) 0.545 0.167 0.179 0.188
CO (ppb) 0.420 −0.101 −0.266 −0.493
Eigenvalue (variance) 2.260 1.620 1.379 1.230
Variance (%) 28.658 20.545 17.484 15.603
Cumulative variance (%) 28.658 49.203 66.687 82.290

Rotated principal component loadings

Botsalano Factor 1 Factor 2 Factor 3 Factor 4

T (oC) −0.001 −0.049 −0.646 0.068
Rad (W/m2) 0.039 −0.003 −0.673 −0.136
RH (%) 0.066 −0.540 0.270 −0.404
u (m/s) −0.070 0.667 0.049 −0.012
v (m/s) 0.185 0.506 0.177 −0.300
NO2 (ppb) 0.668 −0.042 0.045 0.211
NO (ppb) 0.710 0.029 −0.084 −0.157
CO (ppb) 0.070 −0.052 0.115 0.809
Eigenvalue (variance) 1.802 1.746 1.701 1.328
Variance (%) 22.709 22.003 21.430 16.726
Cumulative variance (%) 22.709 44.712 66.142 82.868

Rotated principal component loadings

Marikana Factor 1 Factor 2 Factor 3 Factor 4

T (oC) −0.110 −0.602 0.016 −0.108
Rad (W/m2) −0.089 −0.625 −0.105 0.021
RH (%) −0.376 0.484 −0.181 −0.177
u (m/s) −0.039 0.037 0.973 −0.020
v (m/s) −0.034 0.032 −0.020 0.967
NO2 (ppb) 0.563 0.096 −0.063 −0.001
NO (ppb) 0.439 0.034 0.057 0.070
CO (ppb) 0.571 −0.011 −0.048 −0.130
Eigenvalue (variance) 2.510 2.194 1.031 0.996
Variance (%) 30.728 26.864 12.626 12.189
Cumulative variance (%) 30.728 57.592 70.218 82.407

Rotated principal component loadings

Elandsfontein Factor 1 Factor 2 Factor 3 Factor 4

T (oC) 0.006 0.762 −0.108 0.154
Rad (W/m2) 0.004 0.616 0.103 −0.236
RH (%) 0.034 −0.083 −0.067 0.802
u (m/s) 0.109 −0.137 −0.580 −0.439
v (m/s) 0.073 −0.084 0.798 −0.203
NO2 (ppb) 0.651 −0.049 −0.001 −0.130
NO (ppb) 0.747 0.066 0.011 0.161
Eigenvalue (variance) 1.676 1.556 1.313 1.287
Variance (%) 24.328 22.581 19.062 18.685
Cumulative variance (%) 24.328 46.910 65.972 84.657
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Table 7. Summary of the optimum GAM for each site showing the individual variable contributions to
daily max 8-h O3. This was done with the function gamm in R, which takes into account autocorrela-
tion in the O3 data.

GAMM (Welgegund)

Family: Gaussian
Link function: identity
Formula:
daily max 8-h O3 ~ s(T) + s(RH) + s(u) + s(NO2) + s(NO) + s(CO)
Parametric coefficients:
term Estimate Std. Error t value Pr(> I t I)
(Intercept) 45.59 0.40 114.00 <2e-16
Approximate significance of smooth terms:
term edf Ref.df F p-value

1 s(T) 2.78 2.78 4.29 4.10E-03
2 s(RH) 1.00 1.00 100.93 < 2e-16
3 s(u) 2.07 2.07 3.18 3.47E-02
4 s(NO2) 4.86 4.86 9.83 5.26E-09
5 s(NO) 3.87 3.87 24.84 < 2e-16
6 s(CO) 5.53 5.53 36.18 < 2e-16

R-sq. (adj) = 0.487 AIC = 10,756 n = 1767
GAMM (Botsalano)
Family: Gaussian
Link function: identity
Formula:
daily max 8-h O3 ~ s(T) + s(RH) + s(CO)
Parametric coefficients:
term Estimate Std. Error t value Pr(> I t I)
(Intercept) 46.6921 0.60 77.38 <2e-16
Approximate significance of smooth terms:
term edf Ref.df F p-value

1 s(T) 2.57 2.57 11.24 1.96E-06
2 s(RH) 1.00 1.00 22.14 3.28E-06
3 s(CO) 4.09 4.09 46.74 < 2e-16

R-sq. (adj) = 0.522 AIC = 3013 n = 492
GAMM (Marikana)
Family: Gaussian
Link function: identity
Formula:
daily max 8-h O3 ~ s(T) + s(RH) + s(NO2) + s(NO) + s(CO)
Parametric coefficients:
term Estimate Std. Error t value Pr(> I t I)
(Intercept) 51.36 1.91 26.89 <2e-16
Approximate significance of smooth terms:
term edf Ref.df F p-value

1 s(T) 1 1.00 9.47 2.18E-03
2 s(RH) 1 1.00 19.228 1.36E-05
3 s(NO2) 3.194 3.19 3.16 2.23E-02
4 s(NO) 6.452 6.45 12.06 1.64E-13
5 s(CO) 1 1.00 52.93 9.85E-13

R-sq. (adj) = 0.352 AIC = 4327 n = 630
GAMM (Elandsfontein)
Family: Gaussian
Link function: identity
Formula:
daily max 8-h O3 ~ s(T) + s(RH) + s(u) + s(NO)
Parametric coefficients:
term Estimate Std. Error t value Pr(> I t I)
(Intercept) 48.444 1.47 32.94 <2e-16
Approximate significance of smooth terms:
term edf Ref.df F p-value

1 s(T) 2.10 2.10 8.686 1.68E-04
2 s(RH) 1.00 1.00 10.033 1.62E-03
3 s(u) 4.15 4.15 3.323 1.60E-02
4 s(NO) 1.00 1.00 28.852 1.11E-07

R-sq. (adj) = 0.180 AIC = 4449 n = 598
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To diagnose the nature of the relationships between O3 and each of the independent
variables, partial residual plots were examined (Figure 1). The partial residual plot of each
independent variable, Xk , versus the smooth function, s Xkð Þ, shows the relationship
between Xk and Y; given that the other independent variables are also included in the
model. These residual plots indicate that, in the temperature range 20°C to 35°C, the
relationship between daily max 8-h O3 and T is positive and linear at Welgegund,
Botsalano and Elandsfontein, while a change in slope is evident at lower temperatures.
At Marikana, however, T is linearly and positively correlated for the entire T range. At all
four sites, the change in O3 with a change in relative humidity is linear and negatively
correlated over the entire humidity range. For CO, the partial residual plot identified
a positive linear relationship (although there is a small change in slope around 150–200
ppb for Welgegund and Botsalano) across the concentration range for Marikana. For NO
and NO2, there is sometimes a more complex (non-linear) fit in their partial residual
response, suggesting other effects confounding with NO and NO2.

3.5. Comparison of statistical models

In order to relate the statistical models utilized in this study, the differences between O3

concentrations calculated with each model and measured O3 levels (expressed as R2 and
RMSE) were compared and presented in Table 8. The factors obtained with PCA were also
included in an MLR model to perform PCR, as indicated in section 2.3.2, which are
presented in Table 8. Previous-day daily max 8-h O3 was also included as an independent
variable in the evaluation of these models in order to deal with the autocorrelation
(persistence) in the data and to increase model performance (Comrie 1997), since it
could also contribute to daily max 8-h O3 (Otero et al. 2016). Previous-day daily max 8-
h O3 was not included in sections 3.2 to 3.4 where the influence of different independent
variables on variances of O3 was evaluated, since it could suppress the influence of other
independent variables (Achen 2001). The complete statistics from each of the models are
presented in Tables A1–A3 of the appendix. It is evident from Table 8 that inclusion of the
previous-day daily max 8-h O3 increases the performance of the MLR and GAMmodels, as
reflected by the relative contribution to total explained variance (i.e. R2 significantly
increases). The results show that the O3 concentrations calculated with non-parametric
GAM compared slightly better to measured O3 concentrations than O3 levels calculated
with MLR and PCR, as indicated by the highest R2- and smallest RMSE values for GAM.
However, less complicated MLR models are also suitable to evaluate contributions of
factors to variances in O3 levels. In addition, the inclusion of only previous-day daily max
8-h O3, T, RH and CO in these statistical models explained approximately 70% of the
variance in daily max 8-h O3, which implies that these are the main factors influencing
variations in O3 concentrations in continental South Africa.

3.6. Insights into major factors driving O3 variances

As indicated above, CO, RH and T were identified by all three statistical models as the
major factors driving variances in O3 levels in southern Africa. In many empirical and
modelling studies, temperature is generally considered the most strongly correlated with
O3 concentrations (Jacob et al. 1993; Ryan 1995; Hubbard and Cobourn 1998; Baertsch-
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Ritter et al. 2004; Camalier et al. 2007; Dawson et al. 2007; Lin and Cobourn 2007; Cobourn
2007), which therefore has been used as a reasonable proxy to account for the combined
influence of meteorological and chemical factors on O3 concentrations (Jacob et al. 1993;
Tsakiri and Zurbenko 2011; Rasmussen et al. 2012). High temperatures are usually asso-
ciated with high solar radiation that contributes to increased photochemical reaction

Figure 1. Partial residual plots of independent variables contained in the optimum solution from the
GAM for O3. The solid line in each plot is the estimate of the spline smooth function bounded by 95%
confidence limits (i.e. ±2 standard errors of the estimate). The tick marks along the horizontal axis
represent the density of data points of each explanatory variable (rug plot).

16 T. L. LABAN ET AL.



rates (Equation 1.1 and 1.2), as well as other meteorological conditions favouring O3

production, such as high pressure, stagnation of air masses and reduced cloud cover (NRC
1991; Jacob et al. 1993). Jaars et al. (2014) also indicated that increased ambient VOC
concentrations at Welgegund were associated with higher temperatures resulting from
higher evaporation rates, which could also contribute to the increased O3 formation
potential of VOCs. The positive correlation between O3 and temperature is also largely

Figure 1. (Continued).
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driven by the chemical equilibrium between NOx and peroxyacetylnitrate (PAN), which
serves as a reservoir for NOx (Jacob et al. 1993). The enhanced decomposition of PAN at
high temperatures to regenerate stored NOx results in local O3 production being max-
imized (Jacob et al. 1993; Sillman and Samson 1995; Sillman 1999).

Some studies have indicated the significance of relative humidity to surface O3 con-
centrations (Camalier et al. 2007; Davis et al. 2011; Awang et al. 2018). In the eastern
United States, for instance, a north-south divide in terms of meteorological parameters
controlling O3 levels has been discussed in various studies (Camalier et al. 2007; Zheng
et al. 2007; Davis et al. 2011; Rasmussen et al. 2012; Tawfik and Steiner 2013), with
temperature most strongly correlated with O3 at high latitude and strongly negatively
correlated with relative humidity at lower latitude. This strong negative relationship
between O3 and relative humidity is not widely understood, with several authors pre-
senting possible explanations:

● The O3-relative humidity correlation is closely related to the O3-temperature correla-
tion, where temperature is the actual cause of O3 variability, simultaneously affecting
relative humidity and O3 concentration (Camalier et al. 2007; Bloomer et al. 2009);

● High relative humidity can be associated with increased cloud cover and reduced UV
radiation, which limits the photochemical production of O3 to occur (Camalier et al.
2007; Davis et al. 2011; Porter et al. 2015);

● High relative humidity is associated with wet deposition (precipitation), which does
not affect O3 directly, but leads to the removal of soluble species such as HNO3 and
H2O2 and consequently the availability of NOx and OH (Wild 2007). Furthermore,
increased relative humidity increases the stomatal conductance of plants (Kavassalis
and Murphy (2017)) and therefore also the dry deposition of surface O3;

● Increased concentrations of atmospheric water vapour provide a chemical sink for O3

through the reaction with water after photolysis, instead of the quenching reaction
where O3 is regenerated;

Table 8. Comparison of statistical models in predicting daily max 8-h O3 at the four measurement
sites.
Measurement
site Method Model R2 RMSE

WELGEGUND MLR daily max 8-h O3 = 9.10 + 0.59*O3-1 + 0.28*T − 0.10*RH −
0.21*u + 0.08*v − 1.44*NO + 0.07*CO

0.77 4.75

PCR daily max 8-h O3 = −0.13 − 0.42*PC1 + 5.96*PC2 + 0.86*PC3 − 0.71*PC4 0.62 6.00
GAM daily max 8-h O3 = 45.59 + s(O3-1) + s(T) + s(RH) + s(u) + s(v) + s(NO2) +

s(NO) + s(CO)
0.79 4.47

BOTSALANO MLR daily max 8-h O3 = −0.31 + 0.48*O3-1 + 0.45*T + 0.005*Rad + 0.09*CO 0.70 5.14
PCR daily max 8-h O3 = −0.25 − 4.88*PC1 – 0.09*PC2 + 0.07*PC3 − 2.18*PC4 0.64 5.63
GAM daily max 8-h O3 = 46.75 + s(O3-1) + s(T) + s(Rad) + s(u) + s(v) + s(CO) 0.73 4.69

MARIKANA MLR daily max 8-h O3 = −18.19 + 0.73*O3-1 + 0.48*T + 0.01*Rad +
0.70*v − 0.24*NO + 0.07*CO

0.83 6.93

PCR daily max 8-h O3 = 0.01 + 4.15*PC1 – 3.73*PC2 + 1.01*PC3 − 9.93*PC4 0.77 8.04
GAM daily max 8-h O3 = 51.09 + s(O3-1) + s(T) + s(Rad) + s(u) + s(NO2) + s(NO) +

s(CO)
0.85 6.40

ELANDSFONTEIN MLR daily max 8-h O3 = 18.45 + 0.68*O3-1 + 0.32*T − 0.19*RH −
0.29*v + 0.15*NO2 − 0.49*NO

0.67 9.03

PCR daily max 8-h O3 = −0.31 − 0.38*PC1 − 2.31*PC2 − 1.44*PC3 + 10.36*PC4 0.61 9.88
GAM daily max 8-h O3 = 48.81 + s(O3-1) + s(T) + s(RH) + s(u) + s(NO2) + s(NO) 0.69 8.64
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● Higher relative humidity can lead to more liquid water on aerosol particles, causing
increased loss of gas phase NOx via the heterogeneous reaction of dinitrogen
pentoxide (N2O5) on particulates (Bertram and Thornton 2009). Jia and Xu (2014)
also showed that increased relative humidity can greatly reduce O3 through the
transfer of NO2- and ONO2-containing species (reactive nitrogen species) to the
particulate phase;

● Increased surface O3 concentrations associated with stratospheric intrusions are
associated with low water vapour (Thompson et al. 2014, 2015; Stauffer et al. 2017);

● O3-relative humidity correlation can also result from a shift in the soil-moisture
atmosphere coupling regime (evapotranspiration-limiting regimes), reflecting the
simultaneous impact of soil moisture deficit on near-surface humidity, temperature
and radiation (Tawfik and Steiner 2013).

All these afore-mentioned explanations could contribute to the significant (negative)
correlation between O3 variances and relative humidity observed for southern Africa.
However, the relative role of temperature and relative humidity in driving O3 variability is
not yet fully disentangled due to their interdependency with the order of their signifi-
cance possibly related to short-term dependencies, i.e. weather- and precursor emissions
fluctuations. The significance of the influence of temperature and relative humidity on
surface O3 is also indicated by substantial higher O3 concentrations measured during
spring in 2015 at Welgegund. Dry and warm conditions were associated with the El Niño
weather cycle, which persisted into the first half of 2016 with the 2015/2016 rain season
being one of the warmest and driest in approximately 35 years.

The influence of CO on tropospheric O3 formations is well known. CO and VOCs are the
main sources of peroxy radicals that alter the PSS of O3 production. Laban et al. (2018)
indicated the important influence of CO on surface O3 levels in southern Africa. CO
emissions were attributed to household combustion for space heating and regional
open biomass burning. Source maps indicated that O3 and CO had similar regional
sources with the highest concentrations of these species corresponding with the regions
where a large number of wild fire events occurred. Furthermore, it was also indicated by
Laban et al. (2018) that increased surface O3 levels correlated with higher CO concentra-
tions at Welgegund, Botsalano and Marikana, while it was implied that regional back-
ground regions in southern Africa could be considered VOC limited.

4. Conclusions

Three multivariate statistical models were utilized in order to provide some insights into
major factors driving surface O3 variability in continental southern Africa. Concentrations
of precursors species and meteorological parameters measured at four sites located in the
north-eastern interior of South Africa were included as input parameters. MLR indicated
that CO, temperature and relative humidity made the largest contribution in explaining
variances in daily max 8-h O3. PCA indicated that parameters calculated with MLR are not
strongly collinear and contributed independently to variances. Nonlinear GAM also
revealed that CO, temperature and relative humidity were the most important parameters
influencing variances in O3 levels. Partial residual plots indicated that NOx most likely have
a non-linear relationship with O3, while the relationship with temperature, relative
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humidity and CO is probably linear. Comparison of the measured O3 concentrations with
O3 levels calculated with MLR and GAM indicated that O3 levels calculated with both these
models compared well to measured O3 values, with GAM performing slightly better.

The influence of temperature on O3 variability is expected, while Laban et al. (2018)
indicated the significance of CO emissions associated with biomass burning on surface O3

levels in southern Africa. The significant effect of relative humidity on O3 variability, i.e.
lower O3 associated with increased relative humidity, was unexpected. Therefore, the
influence of relative humidity should not be underestimated in atmospheric O3 formation
and prediction models.

In conjunction with variables utilized in this study, other synoptic-scale meteorological
contributions to surface O3 should also be investigated, e.g. large-scale atmospheric
circulation over this region. It is also important that VOCs are included in statistical
models. No continuous long-term VOC measurements were conducted at any of the
sites. Although Jaars et al. (2014) and Jaars et al. (2016) did report on VOCs collected
with grab samples during a two-year sampling campaign at Welgegund, this data was not
from a statistical perspective considered sufficient to be included in the statistical models.
Photochemical box models can also be used to investigate the main reactions that
participate in O3 formation. A greater scientific understanding of the factors influencing
surface O3 concentrations in South Africa will allow regional air quality models to be
improved for the prediction of surface O3 concentrations. It could be a step towards
developing operational O3 forecast models for cities and towns in South Africa.
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Table A2. PCR models for prediction of daily max 8-h O3 for each measurement site.
Welgegund Constant PC1 PC2 PC3 PC4

Regression coefficient −0.13 −0.42 5.96 0.86 −0.71
R2 0.62
F-statistic 444
P-value 1.63E-226
Estimate of error variance (MSE) 35.98
RMSE 6.00
Botsalano Constant PC1 PC2 PC3 PC4
Regression coefficient −0.25 −4.88 −0.09 0.07 −2.18
R2 0.64
F-statistic 191
P-value 2.75E-94
Estimate of error variance (MSE) 31.67
RMSE 5.63
Marikana Constant PC1 PC2 PC3 PC4
Regression coefficient 0.01 4.15 −3.73 1.01 −9.93
R2 0.77
F-statistic 516
P-value 8.94E-195
Estimate of error variance (MSE) 64.69
RMSE 8.04
Elandsfontein Constant PC1 PC2 PC3 PC4
Regression coefficient −0.31 −0.38 −2.31 −1.44 10.36
R2 0.61
F-statistic 217
P-value 1.53E-112
Estimate of error variance (MSE) 97.66
RMSE 9.88
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Table A3. GAMs for prediction of daily max 8-h O3 for each measurement site: includes tests for each
smooth, the degrees of freedom for each smooth, adjusted R-squared for the model and deviance for
the model.

GAM (Welgegund)

Family: Gaussian
Link function: identity
Formula:
O3 ~ s(O3-1) + s(T) + s(RH) + s(u) + s(v) + s(NO2) + s(NO) + s(CO)
Parametric coefficients:
term Estimate Std. Error t value Pr(> I t I)
(Intercept) 45.5907 0.1075 423.9 <2e-16
Approximate significance of smooth terms:
term edf Ref.df F p-value

1 s(O3-1) 6.782 7.943 220.022 < 2e-16
2 s(T) 6.277 7.493 16.296 < 2e-16
3 s(RH) 4.422 5.485 40.596 < 2e-16
4 s(u) 2.933 3.77 3.683 7.76E-03
5 s(v) 2.204 2.86 3.395 2.68E-02
6 s(NO2) 4.006 4.993 9.407 7.52E-09
7 s(NO) 2.532 3.248 20.323 1.76E-13
8 s(CO) 8.323 8.877 36.994 < 2e-16

R-sq. (adj) = 0.79 Deviance explained = 79.3%
GCV score = 20.85 Scale est. = 20.39 n = 1763
AIC score = 10,349 RMSE = 4.47
GAM (Botsalano)
Family: Gaussian
Link function: identity
Formula:
O3 ~ s(O3-1) + s(T) + s(Rad) + s(u) + s(v) + s(CO)
Parametric coefficients:
term Estimate Std. Error t value Pr(> I t I)
(Intercept) 46.7474 0.2187 213.7 <2e-16
Approximate significance of smooth terms:
term edf Ref.df F p-value

1 s(O3-1) 3.088 3.912 66.936 < 2e-16
2 s(T) 1 1 26.666 3.56E-07
3 s(Rad) 2.07 2.641 5.668 1.89E-03
4 s(u) 4.829 5.965 2.677 1.49E-02
5 s(v) 3.733 4.743 2.443 3.60E-02
6 s(CO) 4.332 5.396 35.054 < 2e-16

R-sq. (adj) = 0.73 Deviance explained = 74.3%
GCV score = 23.96 Scale est. = 22.96 n = 480
AIC score = 28,888 RMSE = 4.69
GAM (Marikana)
Family: Gaussian
Link function: identity
Formula:
O3 ~ s(O3-1) + s(T) + s(Rad) + s(u) + s(NO2) + s(NO) + s(CO)
Parametric coefficients:
term Estimate Std. Error t value Pr(> I t I)
(Intercept) 51.0886 0.2629 194.3 <2e-16
Approximate significance of smooth terms:
term edf Ref.df F p-value

1 s(O3-1) 4.12 5.137 305.399 < 2e-16
2 s(T) 1 1 18.271 2.22E-05
3 s(Rad) 1 1 29.151 9.58E-08
4 s(u) 4.441 5.541 3.117 6.80E-03
5 s(NO2) 5.213 6.323 3.46 2.25E-03
6 s(NO) 7.72 8.536 4.481 2.10E-05
7 s(CO) 3.619 4.574 23.334 < 2e-16

R-sq. (adj) = 0.85 Deviance explained = 85.4%
GCV score = 44.90 Scale est. = 42.86 n = 620
AIC score = 4119 RMSE = 6.39

(Continued)
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Table A3. (Continued).
GAM (Welgegund)

GAM (Elandsfontein)
Family: Gaussian
Link function: identity
Formula:
O3 ~ s(O3-1) + s(T) + s(RH) + s(u) + s(NO2) + s(NO)
Parametric coefficients:
term Estimate Std. Error t value Pr(> I t I)
(Intercept) 48.8052 0.3657 133.5 <2e-16
Approximate significance of smooth terms:
term edf Ref.df F p-value

1 s(O3-1) 1.664 2.1 341.565 < 2e-16
2 s(T) 2.298 2.923 4.403 5.54E-03
3 s(RH) 1 1 61.999 1.58E-14
4 s(u) 4.759 5.871 5.371 3.04E-05
5 s(NO2) 1 1 4.94 2.66E-02
6 s(NO) 2.41 3.026 10.294 1.20E-06

R-sq. (adj) = 0.69 Deviance explained = 69.6%
GCV score = 78.56 Scale est. = 76.62 n = 573
AIC score = 4128 RMSE = 8.64
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