26 research outputs found

    Supermartensiittiset ruostumattomat teräkset ja niiden käyttökohteet

    Get PDF
    Tiivistelmä. Kandidaatintyön tavoitteena oli perehtyä supermartensiittisiin ruostumattomiin teräksiin yleisellä tasolla sekä niiden käyttökohteisiin. Supermartensiittiset ruostumattomat teräkset koostuvat pääosin martensiittisesta faasista sekä prosentuaalisesta määrästä jäännösausteniittia sisältävästä faasista. Kyseisen materiaali on koostumukseltaan yleensä 11–13 % kromia, 4–6 % nikkeliä ja ne sisältävät erityisen vähän välisijahiiltä ja typpeä. Tärkein käyttökohde kyseisille teräksille on offshore-öljy- ja kaasuteollisuudessa erilaisissa putkistoissa, jotka vaativat hyvää korroosion sietokykyä, lujuutta, kovuutta ja hitsattavuutta.Supermartensitic stainless steels and applications. Abstract. The objective of this thesis was to get acquainted with supermartensitic stainless steels generally and their general applications. Metallurgy, properties and their most common applications are explained briefly in the thesis. Supermartensitic stainless steels contain mostly martensitic phase with a prosentual amount of retained austenite. The chemical compositions of SMSS are based on the Fe-Cr-Ni-Mo system with 4–6% of Ni, 0.5–2.5% of Mo and very low interstitial elements C and N. It has been increasingly applied to critical structures and components in offshore oil and gas industry like seamless pipes. These applications require excellent combined properties of corrosion resistance, weldability, strength and toughness

    ANO1 Expression Orchestrates p27Kip1/MCL1-Mediated Signaling in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that derive from the mucosal epithelium of the upper aerodigestive tract and present high mortality rate. Lack of efficient targeted-therapies and biomarkers towards patients’ stratification are caveats in the disease treatment. Anoctamin 1 (ANO1) gene is amplified in 30% of HNSCC cases. Evidence suggests involvement of ANO1 in proliferation, migration, and evasion of apoptosis; however, the exact mechanisms remain elusive. Aim of this study was to unravel the ANO1-dependent transcriptional programs and expand the existing knowledge of ANO1 contribution to oncogenesis and drug response in HNSCC. We cultured two HNSCC cell lines established from primary tumors harboring amplification and high expression of ANO1 in three-dimensional collagen. Differential expression analysis of ANO1-depleted HNSCC cells demonstrated downregulation of MCL1 and simultaneous upregulation of p27Kip1 expression. Suppressing ANO1 expression led to redistribution of p27Kip1 from the cytoplasm to the nucleus and associated with a cell cycle arrested phenotype. ANO1 silencing or pharmacological inhibition resulted in reduction of cell viability and ANO1 protein levels, as well as suppression of pro-survival BCL2 family proteins. Collectively, these data provide insights of ANO1 involvement in HNSCC carcinogenesis and support the rationale that ANO1 is an actionable drug target

    ANO1 Expression Orchestrates p27Kip1/MCL1-Mediated Signaling in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that derive from the mucosal epithelium of the upper aerodigestive tract and present high mortality rate. Lack of efficient targeted-therapies and biomarkers towards patients’ stratification are caveats in the disease treatment. Anoctamin 1 (ANO1) gene is amplified in 30% of HNSCC cases. Evidence suggests involvement of ANO1 in proliferation, migration, and evasion of apoptosis; however, the exact mechanisms remain elusive. Aim of this study was to unravel the ANO1-dependent transcriptional programs and expand the existing knowledge of ANO1 contribution to oncogenesis and drug response in HNSCC. We cultured two HNSCC cell lines established from primary tumors harboring amplification and high expression of ANO1 in three-dimensional collagen. Differential expression analysis of ANO1-depleted HNSCC cells demonstrated downregulation of MCL1 and simultaneous upregulation of p27Kip1 expression. Suppressing ANO1 expression led to redistribution of p27Kip1 from the cytoplasm to the nucleus and associated with a cell cycle arrested phenotype. ANO1 silencing or pharmacological inhibition resulted in reduction of cell viability and ANO1 protein levels, as well as suppression of pro-survival BCL2 family proteins. Collectively, these data provide insights of ANO1 involvement in HNSCC carcinogenesis and support the rationale that ANO1 is an actionable drug target. </p

    Effects of hormonal contraception on systemic metabolism : cross-sectional and longitudinal evidence

    Get PDF
    Background: Hormonal contraception is commonly used worldwide, but its systemic effects across lipoprotein subclasses, fatty acids, circulating metabolites and cytokines remain poorly understood. Methods: A comprehensive molecular profile (75 metabolic measures and 37 cytokines) was measured for up to 5841 women (age range 24-49 years) from three population-based cohorts. Women using combined oral contraceptive pills (COCPs) or progestin-only contraceptives (POCs) were compared with those who did not use hormonal contraception. Metabolomics profiles were reassessed for 869 women after 6 years to uncover the metabolic effects of starting, stopping and persistently using hormonal contraception. Results: The comprehensive molecular profiling allowed multiple new findings on the metabolic associations with the use of COCPs. They were positively associated with lipoprotein subclasses, including all high-density lipoprotein (HDL) subclasses. The associations with fatty acids and amino acids were strong and variable in direction. COCP use was negatively associated with albumin and positively associated with creatinine and inflammatory markers, including glycoprotein acetyls and several growth factors and interleukins. Our findings also confirmed previous results e.g. for increased circulating triglycerides and HDL cholesterol. Starting COCPs caused similar metabolic changes to those observed cross-sectionally: the changes were maintained in consistent users and normalized in those who stopped using. In contrast, POCs were only weakly associated with metabolic and inflammatory markers. Results were consistent across all cohorts and for different COCP preparations and different types of POC delivery. Conclusions: Use of COCPs causes widespread metabolic and inflammatory effects. However, persistent use does not appear to accumulate the effects over time and the metabolic perturbations are reversed upon discontinuation. POCs have little effect on systemic metabolism and inflammation.Peer reviewe

    An interaction map of circulating metabolites, immune gene networks, and their genetic regulation

    Get PDF
    Background: Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. Results: We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. Conclusions: This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.Peer reviewe

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been
    corecore