104 research outputs found

    What Makes Pre-trained Language Models Better Zero/Few-shot Learners?

    Full text link
    In this paper, we propose a theoretical framework to explain the efficacy of prompt learning in zero/few-shot scenarios. First, we prove that conventional pre-training and fine-tuning paradigm fails in few-shot scenarios due to overfitting the unrepresentative labelled data. We then detail the assumption that prompt learning is more effective because it empowers pre-trained language model that is built upon massive text corpora, as well as domain-related human knowledge to participate more in prediction and thereby reduces the impact of limited label information provided by the small training set. We further hypothesize that language discrepancy can measure the quality of prompting. Comprehensive experiments are performed to verify our assumptions. More remarkably, inspired by the theoretical framework, we propose an annotation-agnostic template selection method based on perplexity, which enables us to ``forecast'' the prompting performance in advance. This approach is especially encouraging because existing work still relies on development set to post-hoc evaluate templates. Experiments show that this method leads to significant prediction benefits compared to state-of-the-art zero-shot methods

    Measurement of Soil Water Content with Dielectric Dispersion Frequency

    Get PDF
    Frequency domain reflectometry (FDR) is an inexpensive and attractive methodology for repeated measurements of soil water content (θ). Although there are some known measurement limitations for dry soil and sand, a fixed-frequency method is commonly used with commercially available FDR probes. The purpose of our study was to determine if the soil dielectric spectrum could be used to measure changes in θ. A multifrequency FDR probe was constructed with a 6-mm diameter, and a soil dielectric spectrum was obtained. Using the dielectric spectrum, the dielectric dispersion frequency (fd) was determined. It was discovered that changes in fd were highly correlated with changes in θ, and a third-order polynomial equation (R2 = 0.96) was developed describing the relationship. The effectiveness of fd for θ measurement was evaluated for three soils and a sand across a range of θ. The effects of soil temperature and soil salinity were also evaluated. Accurate measurements of θ were obtained even in dry soil and sand. The root mean square error of the θ estimated by the fdmeasurement was 0.021. The soil temperature and soil salinity had no measureable effects on θ determination. The use of fd for θ determination should be an effective and accurate methodology, especially when dry soils, soil temperature, and/or soil salinity could potentially cause problems with the θ measurements

    Electroacupuncture Ameliorates Learning and Memory via Activation of the CREB Signaling Pathway in the Hippocampus to Attenuate Apoptosis after Cerebral Hypoperfusion

    Get PDF
    Studies have shown that electroacupuncture (EA) ameliorates learning and memory after ischemic injury. However, there have been few studies elucidating the mechanisms of EA on learning and memory in cerebral hypoperfusion. In this study, we explored the cAMP response element-binding protein (CREB) signaling pathway-mediated antiapoptotic action involved in EA-induced improvement of learning and memory. EA at GV20 and GV14 acupoints was applied in cerebral hypoperfusion rats. A Morris water maze task was performed, and the immunoreactivities of pCREB, Bcl-2, and Bax in the hippocampal CA1 area were evaluated by the Western blotting technique. Our findings indicated that (1) EA ameliorated spatial learning and memory impairment in cerebral hypoperfusion rats; (2) EA increased the immunoreactivities of pCREB and Bcl-2 and decreased the immunoreactivity of Bax; (3) intracerebroventricular administration of H89 (the inhibitor of protein kinase A) blocked EA-induced, pCREB-mediated antiapoptotic action and improved learning and memory. These results suggest that EA can ameliorate learning and memory via activation of the CREB signaling pathway in the hippocampus to attenuate apoptosis after cerebral hypoperfusion

    Spin-glass ground state in a triangular-lattice compound YbZnGaO4_4

    Full text link
    We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO4_4 to be spin glass, including no long-range magnetic order, prominent broad excitation continua, and absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature a.c. susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion to hold also for its sister compound YbMgGaO4_4, which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.Comment: Version as accepted to PR

    Co-Targeting Plk1 and DNMT3a in Advanced Prostate Cancer

    Get PDF
    Because there is no effective treatment for late-stage prostate cancer (PCa) at this moment, identifying novel targets for therapy of advanced PCa is urgently needed. A new network-based systems biology approach, XDeath, is developed to detect crosstalk of signaling pathways associated with PCa progression. This unique integrated network merges gene causal regulation networks and protein-protein interactions to identify novel co-targets for PCa treatment. The results show that polo-like kinase 1 (Plk1) and DNA methyltransferase 3A (DNMT3a)-related signaling pathways are robustly enhanced during PCa progression and together they regulate autophagy as a common death mode. Mechanistically, it is shown that Plk1 phosphorylation of DNMT3a leads to its degradation in mitosis and that DNMT3a represses Plk1 transcription to inhibit autophagy in interphase, suggesting a negative feedback loop between these two proteins. Finally, a combination of the DNMT inhibitor 5-Aza-2\u27-deoxycytidine (5-Aza) with inhibition of Plk1 suppresses PCa synergistically

    Safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple doses of aficamten in healthy Chinese participants: a randomized, double-blind, placebo-controlled, phase 1 study

    Get PDF
    Objectives: Aficamten is a selective, small-molecule allosteric inhibitor of cardiac sarcomere being developed as a chronic oral treatment for patients with symptomatic obstructive hypertrophic cardiomyopathy. This was the first-in-Chinese study aiming to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of aficamten in healthy adults.Methods: This double-blind, randomized, placebo-controlled, phase 1 study was conducted in 28 healthy male and female Chinese participants after single ascending dose (SAD) and multi-dose (MD) administrations of aficamten. In the SAD cohort, 16 participants were randomized to receive a single oral dose of aficamten: 10 mg, 20 mg, or placebo. In the MD cohort, 12 participants were randomized to receive multiple doses of aficamten: 5 mg or placebo once daily for 14 days. Safety was monitored throughout the study with electrocardiograms, echocardiograms, clinical laboratory tests, and reporting of adverse events (AEs). Pharmacokinetic profiles of aficamten and metabolites, as well as CYP2D6 genetic impact, were evaluated.Results: A total of 35 treatment-emergent AEs were reported by 14 (50%) participants with mild severity. There were no serious AEs or adverse decreases in left ventricular ejection fraction below 50% during the study. Aficamten was dose-proportional over the dose range of 5–20 mg and accumulated in the MD cohort.Conclusion: Aficamten was safe and well-tolerated in the healthy Chinese adult participants. The pharmacokinetics of aficamten in the Chinese population was comparable to those previously found in Western participants. These phase 1 data support the progression of aficamten into future clinical studies in Chinese patients.Clinical Trial registration:https://clinicaltrials.gov, identifier: NCT04783766

    Conformation Effects of CpG Methylation on Single-Stranded DNA Oligonucleotides: Analysis of the Opioid Peptide Dynorphin-Coding Sequences

    Get PDF
    Single-stranded DNA (ssDNA) is characterized by high conformational flexibility that allows these molecules to adopt a variety of conformations. Here we used native polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy to show that cytosine methylation at CpG sites affects the conformational flexibility of short ssDNA molecules. The CpG containing 37-nucleotide PDYN (prodynorphin) fragments were used as model molecules. The presence of secondary DNA structures was evident from differences in oligonucleotide mobilities on PAGE, from CD spectra, and from formation of A-T, G-C, and non-canonical G-T base pairs observed by NMR spectroscopy. The oligonucleotides displayed secondary structures at 4°C, and some also at 37°C. Methylation at CpG sites prompted sequence-dependent formation of novel conformations, or shifted the equilibrium between different existing ssDNA conformations. The effects of methylation on gel mobility and base pairing were comparable in strength to the effects induced by point mutations in the DNA sequences. The conformational effects of methylation may be relevant for epigenetic regulatory events in a chromatin context, including DNA-protein or DNA-DNA recognition in the course of gene transcription, and DNA replication and recombination when double-stranded DNA is unwinded to ssDNA

    Integrated genomic analyses of ovarian carcinoma

    Get PDF
    A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.National Institutes of Health (U.S.) (Grant U54HG003067)National Institutes of Health (U.S.) (Grant U54HG003273)National Institutes of Health (U.S.) (Grant U54HG003079)National Institutes of Health (U.S.) (Grant U24CA126543)National Institutes of Health (U.S.) (Grant U24CA126544)National Institutes of Health (U.S.) (Grant U24CA126546)National Institutes of Health (U.S.) (Grant U24CA126551)National Institutes of Health (U.S.) (Grant U24CA126554)National Institutes of Health (U.S.) (Grant U24CA126561)National Institutes of Health (U.S.) (Grant U24CA126563)National Institutes of Health (U.S.) (Grant U24CA143882)National Institutes of Health (U.S.) (Grant U24CA143731)National Institutes of Health (U.S.) (Grant U24CA143835)National Institutes of Health (U.S.) (Grant U24CA143845)National Institutes of Health (U.S.) (Grant U24CA143858)National Institutes of Health (U.S.) (Grant U24CA144025)National Institutes of Health (U.S.) (Grant U24CA143866)National Institutes of Health (U.S.) (Grant U24CA143867)National Institutes of Health (U.S.) (Grant U24CA143848)National Institutes of Health (U.S.) (Grant U24CA143843)National Institutes of Health (U.S.) (Grant R21CA135877

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe
    • …
    corecore