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Supplementary Materials and Methods 

High-throughput data preprocessing. Microarray Affymetrix Human Exon 1.0 ST Array data 

(.cel files) were processed and normalized by Robust Multi-array Average (RMA) algorithm 
[1]

. 

TCGA-PRAD RNAseqV2 raw counts in gene level were normalized by total reads and then by 

gene length as RPKM (Reads Per Kilobase of transcript, per Million mapped reads) 
[2]

. Then, the 

normalized transcript counts RPKM of an individual gene was corrected as a proportion of 

transcript read counts in the entire sample set by ratio (mean of group of housekeeping gene 

ACTB expression to current ACTB expression) to each sample. Log2-transformation normalized 

densities of targeted genes were used for further statistical analysis. 

Construction of XDeath model 

1) Cell death pathway profiles and its network ontology construction: We collected 29 cell 

death pathways with 2,698 genes from Gene Set Enrichment Analysis (GSEA) MsigDB C2 

databse across 8 cell death modes, including apoptosis, autosis, autophagy, necroptosis, 

ferroptosis etc. These 29 cell death pathways have 3,356,224 interactions of genes. 1,832 

overlapping genes in TCGA and GEO datasets are identified. 123 out of 1,832 genes are reported 

as hallmark genes by Nomenclature Committee on Cell Death (NCCD) in 2018 and 271 of 1,832 

genes are recommended as drug-gable targets by Drug Bank annotation 

(https://www.drugbank.ca/releases/latest). These 29 cell death pathways have 3,356,224 

interactions between genes which will be used for the study. 

2) XDeath for modeling of signaling crosstalk in disease progression networks: XDeath is a 

dynamic data-driven network-based model by graphical regression integration with density-

clustering to infer the crosstalk pathways of cell death during multiple space variations, such as 

gleason score (GS), to seek the optimal cancer targets. 

The systems biology model aims to disclose the molecular mechanism contributing to disease 

progression via dynamic co-expression networks. Transcriptome data is used to figure out 

overlapping genes involved in the pathways of 8 cell death modes in PCa. Patients were 

categorized upon GS. Gene enrichment variations could be analyzed for changes across disease 

progression once normalized (GS5) via tumors (GSj, j=6, 7, 8, 9). Through the spearman 

correlation analysis, gene-gene interactions are restructured in each group with differential GS 

status to seek trend of enrichment genes or pairs of genes associated with disease progression. 
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The trends signify the genes dramatically varied across groups with different GS and these genes 

can be mapped back to the pathways in which they are involved and therefore, cell death modes 

as well. We then calculate the crosstalk enrichment score between every two pathways and rank 

the scores. Once high co-expression interactions are identified, the variations across GS statuses 

can be mapped. In this case, disease progression can be verified through two factors: gene/node 

enrichment analyses and interaction/edge enrichment analyses. For example, in patients with GS 

5, all nodes and edges will be neutral because they are benign. However, in the patients with GS 

6-9, node color and edge thickness may vary depending on the changes of gene expression. The 

enriched networks of specific GS statuses can then be traced back to their corresponding 

pathways. These pathways are then visually condensed. The application of enrichment scores in 

specific pathways identifies the cell death modes in consistent to signify likelihood of crosstalk. 

Significant crosstalk events are then identified by calculating the total crosstalk enrichment score 

between every two pathways across different cell death modes and will outline hallmark or target 

genes. In significant crosstalk events, these genes will have high levels of co-expression that can 

be traced back to the density cluster. Therefore, the targets genes are now considered druggable 

candidates for novel therapies. 

3) XDeath algorithm flowchart: The XDeath could precisely identify the crosstalk variation of 

cell death signaling pathways by five steps. The first step is to preprocess high-throughput data 

and valid gene/pathway pairs. It includes the gene expression profiles’ normalization. Second, 

we re-constructed a co-expression network by Spearman correlation in each state. Third, we 

scored weights for nodes and edges variations. The node variation is the differential gene 

expression calculations and the variation in edges is the difference of tumors verses its adjacent 

normal gene expression profile. Fourth, density clustering calculation of weight scoring 

nodes/edges is used to detect disease progression enrichment. Fifth, Kappa statistic test is used to 

assess graphical sets significance.  

Cell-death pathway profiling and network ontology. Step 1. Differentially expressed genes 

(DEG) were calculated between tumor samples and normal samples with different GS status. 

Step 2. Gene set enrichment analysis (GSEA) 
[3]

 was performed to identify pathway activation in 

PCa by comparing normal versus tumor samples with different GS. GSEA software of 6.2 

version of the Molecular Signatures Database (MSigDB) C2-Canonical pathways (CP) gene sets 

was used to identify the pathway enrichment of DEGs in PCa (normal versus tumor). All 
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pathway normalized enrichment scores (NES) in each GS were ranked. All ranks of NES were 

organized and used for the next step calculation. Step 3. Identification of hallmark genes and 

enriched pathways of disease progression. A Spearman correlation model 𝑟 = 𝑐𝑜𝑟𝑟(𝑥, 𝑦) was 

used to calculate the correlation coefficient 𝑟 and its p-value to variation of genes or pathways 

associated with GS increase. Here, 𝑥 is the gene differential expression degree between tumor 

and normal tissues, such as fold change, and 𝑦 is the value of GS. For pathways, 𝑥 is the value of 

NES and 𝑦 is the value of GS. A positive correlation means the gene/pathway is activated with 

GS increasing and contributes to PCa progression. The disease progression hallmark genes and 

enrichment pathways were obtained by ranking these correlation coefficients. A graph Laplacian 

matrix M was constructed, where row and column are genes/pathways, and the value in the 

middle denotes edge correlation coefficient 𝑟. Step 4. Quantification of crosstalk revealed the 

synergistic relationship of genes. With our Fast and Furious Bayesian Network (FFBN) inference 

model 
[4]

, we constructed a whole genome regulation network to determine the causal direction 

of edges in late-stage PCa. Within the network, crosstalking genes are defined as those that are 

incident on interactions between Pair of Genes’ first neighbor gene Sets (IPGSs), which include 

the overlapping genes and the interaction edges (Fig. S1C). The effect of crosstalk on the 

interaction density between two subnetworks was quantified. The decrease in interaction density 

after crosstalk nodes and edge IPGSs were removed from two merging subnetworks was termed 

ΔD. In this way, exclusivity on gene-gene pair interaction network was tested by Fisher's exact 

test in the analysis of the contingency table to the number of four status from two sub-networks 

within each GS status (Supplementary Table 2). 0 means no overlapping to edges, 1 means 

overlapping to edges.If the marginal totals 𝑁, 𝐾, 𝑀 are known in the contingency table, only a 

single degree of freedom 𝑋 is left. Fisher’s exact test showed that the probability of obtaining 

any such set of values 𝑋 was given by the hypergeometric distribution:  

𝑝(𝑋 ≤ 𝑑) = 𝐹(𝑋|𝑁, 𝐾, 𝑀) = ∑
(𝐾

𝑋)(𝑁−𝐾
𝑀−𝑋)

(𝑁
𝑀)

= ∑
(𝑁−𝐾)!𝐾!(𝑁−𝑀)!𝑀!

𝑎!𝑏!𝑐!𝑋!

𝑑
𝑋=0

𝑑
𝑋=0      

where the total number of edges is 𝑁, 𝑋 is the number of overlapping edges in two modules 

(subnetworks). (𝐾
𝑋

) is the binomial coefficient and the symbol ! indicates the factorial operator. 

Empirical p-value of ∆𝐷  is calculated by use of a null distribution of ∆𝐷  of crosstalk genes 

controlled by one million randomly selected gene pairs from the input contingency table, 

referring to algorithm Binox 
[5]

. Pairs of gene score from IPGSs were ranked from top to bottom 

https://en.wikipedia.org/wiki/Hypergeometric_distribution
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in ascending statistical significance. The top-ranked pairs of genes were defined as potential co-

targeted genes. Here, the crosstalk effect between Plk1 and DNMT3a was ranked as the top 3. 

We therefore believe that co-targeting Plk1 and DNMT3a offers a potential therapeutic strategy 

for patients with advanced PCa. Step 5. Crosstalk of molecular mechanisms between pairs of 

genes on network was revealed by the shortest path Dijkstra's algorithm on network Laplacian 

matrix M. The main idea is to seek the shortest connection from gene A to gene B such that the 

total sum of the edge (crosstalk of pairs of genes) weights is minimum (Fig. S1D). As such, we 

can identify a set of non-redundant shortest paths for the pairs of genes by one million random 

selection. The statistical significance of the average length of multiple short paths that connect 

gene A to gene B can be calculated by a chi-squared test (𝑥2 test). The significant short paths 

support the identified crosstalk of mechanisms of paired gene A and gene B on the graph. 

Step 6. Analysis of upstream regulators of crosstalking genes. The goal of upstream regulator 

analysis is to identify molecules upstream of these crosstalking gene sets that potentially explain 

the observed expression changes 
[6]

. Here, Ingenuity Pathway Analysis (IPA) software 

(http://www.ingenuity.com) was used to score regulatory networks of upstream genes based on a 

large-scale causal gene/protein network derived from its Ingenuity Knowledge Base. The p-

values of these crosstalking genes with DEGs (normal versus tumor) were subjected to IPA 

analysis. The IPA of upstream regulators defines an overlap p-value that measures enrichment of 

network-regulated genes in the dataset, as well as an activation Z-score that can be used to find 

likely regulating molecules based on a statistically significant pattern matching up-regulation, 

and to predict the status (either activated or inhibited) of a putative regulator as well. 

Protein-Protein Interaction (PPI) analysis. The human PPI data was downloaded from the 

search tool for the retrieval of interacting genes/proteins (STRING) database (https://string-

db.org/). In total, 19,472 proteins were included and 11,873,250 PPIs were obtained. 

Differential expression analysis. This was carried out for all genes in tumors of each GS status 

and adjacent normal samples. All data analysis was performed with R software with R ‘limma’ 

package being used for DEG analysis of microarray GSE21034 data. To TCGA-PRAD 

RNAseqV2 data, EdgeR tool was used to carry out differential analysis where raw counts were 

the input. Genes with reads count smaller than 10 in total samples were filtered out, and genes 

with absolute value to fold change >2 and adjusted p value<0.05 were considered as significantly 

differential expression.  

http://www.ingenuity.com/
https://string-db.org/
https://string-db.org/
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Pathway enrichment analysis. GSEA software 
[3]

 was used for pathway gene set enrichment 

analysis. Gene expression profiles and associated with phenotypes input into GSEA, parameters 

setting is to select MSigDB v6.2 database C2 Canonical pathways (CP) set as reference 

pathways background for the pathway enrichment analysis. 

Gene regulation network by Bayesian causal inference. FFBN inference model 
[4]

 was used to 

construct a whole genome regulation network with significantly fewer model configuration rules 

to determine the causal direction of edges, especially to tumors in a specific GS status. 

Network analysis. The layout of disease network was grouped by the classification of GS, and 

node degree is the number of interactions for each node in the global protein-protein network. 

Upstream regulator analysis in network was conducted by IPA software. These significant genes 

are entered into IPA to seek their key upstream regulatory genes based on a large-scale causal 

gene network derived from IPA Knowledge Base. The software Cytoscape 
[7]

 was used to 

conduct network visualization. 

Network interaction of cell death and searching engineer. We constructed a visualizing 

system platform CrosstalkDeathDB to satisfy user-specific needs, with free access by the link 

https://pcm2019.shinyapps.io/LijunLab-CD-pathway/. CrosstalkDeathDB platform was designed 

to tailor gene-gene and subnetwork-subnetwork relationships within all the existing cell-death 

modes. 

Correlation variation of mRNA-methylation. Differentially methylated CpG sites (DMCs), 

differentially methylated regions (DMRs), and DEGs were identified by two-sample t-test. The 

relationship between the two omics was further analyzed by Pearson correlation analysis. In 

addition, significant DMRs and CpG site co-methylation, co-gene expression and co-methylation 

and gene expression network (WCCN) was constructed, followed by Spearman correlation 

analysis to mRNA, methylation and an integrated analysis of DNA methylation and gene 

expression. The Cheng lab has developed a pattern recognition and match computational method, 

called 3MCdiscovery, for matching these three networks cluster patterns of DMRs, DMCs and 

their correlation mRNA-methylation and seek methylation-mRNA variation patterns and drive 

DNA methylation variation with PCa disease progression. 

Cell culture and transfection. PC3 cells were cultured in ATCC-formulated F-12K medium 

supplemented with 10% (v/v) fetal bovine serum (FBS) at 37°C in 5% CO2. DU145 cells were 

cultured in Dulbecco's Modified Eagle Medium with 10% FBS. Cells were transiently 

https://pcm2019.shinyapps.io/LijunLab-CD-pathway/
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transfected with plasmid DNA with Lipofectamine 2000 transfection reagent from Invitrogen. 

Cells stably expressing different forms of DNMT3A (WT, S390A, S393A) were obtained upon 

selection with 0.8 mg/ml G418 (Sigma) for 2 weeks. 

Reagents and plasmid DNA. MG132, cycloheximide and nocodazole were purchased from 

Sigma, BI2536, rapamycin and 5-Aza were obtained from Selleckchem, the human DNMT3a 

and mGFP-RFP-LC3 plasmids were ordered from Addgene, and the site-directed mutagenesis kit, 

used to generate the specific mutation, was purchased from Agilent Technologies. Antibodies 

against DNMT3A, β-actin, GAPDH, p-H3, Cyclin D1/D2, myc, HA, LC A/B, p62, ULK1, p-S6, 

S6, p-ULK-S555, p-ULK-S757, p-AMPK-T172, p-AMPK-S485, ULK1, AMPK, Cleaved PARP, 

and PCNA were purchased from Cell Signaling Technology (CST). Antibodies against Flag, 

ubiquitin, Plk1 and p-DNMT3a were purchased from sigma, Santa Cruz, Millipore, and Abcam, 

respectively.     

Immunofluorescence (IF) staining. Cells were incubated with antibodies against Ki67 (catalog 

no 9449; CST) and cleaved-caspase 3 (catalog no 9661; CST) for 1 hour at room temperature, 

followed by incubation with secondary antibody and 4' 6-diamidino-2-phenylindole (DAPI; 

Sigma) for 1 hour. 

Immunochemistry (IHC) staining. After tumors were fixed with 10% Formalin overnight, 

slides were incubated with first antibodies for overnight at 4 °C, followed by incubation with 

secondary antibodies for I hour at room temperature and development of the colored product of 

the enzyme with the appropriate chromogen (DAB substrate kit, SK-4100, Vector). 

Scoring of immunochemistry staining in human tissue microarrays 

Human prostate cancers were harvested and immunochemistry stained. Tumors were graded on a 

total score of score for staining proportion (from 0 to 5) plus score for staining intensity (from 0 

to 3). 1) Score for proportion: 0= no staining; 1= ≥0% and ≤1% nuclei staining; 2= ≥1% and ≤10% 

nuclei staining; 3= ≥10% and ≤33% nuclei staining, and 4= ≥33% and ≤66% nuclei staining; 5= 

≥66% and ≤100% nuclei staining, and 2) Score for intensity: 0= no staining; 1= weak staining; 

2= moderate staining; and 3=strong staining. Maximum score =8. Score≤2 means negative. 

Score >2 means positive.  

Immunoblotting (IB) and immunoprecipitation (IP). Cell lysates were prepared in TBSN 

buffer (20 mM Tris, pH 8.0, 150 mM NaCl, 0.5% Nonidet P-40, 5 mM EGTA, 1.5 mM EDTA, 

20 mM p-nitrophenyl phosphate). For IP, lysates were incubated with various antibodies in 



 

9 

 

TBSN buffer at 4°C overnight, followed by 3 washes with TBST buffer plus 500 mM NaCl and 

3 additional washes with TBST buffer and 150 mM NaCl. For IB, filters were incubated with 

specific antibodies at 4°C overnight, followed by an additional incubation with the secondary 

antibody for 1 hour. 

MTT and colony formation. For the MTT assay, cells (2×10
3
) were seeded into 96-well plates, 

incubated for 0-6 days, and stained with MTT dye (Sigma, MO), followed by measurement of 

absorbance at 490 nm. For the colony formation assay, cells (1×10
3
) were seeded into 6-well 

plates, cultured for 7 to 12 days, fixed with paraformaldehyde, and stained with Coomassie 

brilliant blue.  
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Supplementary Figures and Figure Legends 

 

Supplementary Figure 1. Integrative hierarchical analysis of PCa progression. A, Heatmap 
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of gene expression in patients with various levels of PSA. B, Heatmap of gene expression in the 

context of correlation between GS and PSA levels. C, Crosstalk of subnetworks. The 

overlapping region between the two subnetworks reveals the common genes and interacting 

edges. D, Molecular mechanism of pathway interactions. The upper panel identifies Plk1 and 

DNMT3a co-expressing modules and their associated crosstalk gene sets, the lower panel 

identifies the crosstalk pathways between Plk1 and DNMT3a by integrating network analysis. 
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Supplementary Figure 2. Average correlation analysis for methylation of targeted genes 

and mRNA of 4871 genes in 533 PCa patients from TCGA dataset. 
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Supplementary Figure 3. Methylation and gene expression profiles and associations in PCa 

patients with various GS status. 
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Supplementary Figure 4. Cell viability assays in RWPE-1 and DU145 cells treated with 5-

Aza and/or GSK461364A. A, RWPE-1 and DU145 cells were treated with different dose of 5-

Aza for 24 hours, followed by MTT assay.  B, RWPE-1 and DU145 cells were treated with 

different dose of GSK461364A for 24 hours, followed by MTT assay. C,   RWPE-1 and DU145 

cells were treated with 5 µM 5-Aza plus different dose of GSK461364A for 24 hours, followed 

by MTT assay.   
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Supplementary Figure 5. Cell viability assays in cells depleted of DNMT1, DNMT3a and 

DNMT3b plus GSK461364A treatment. 
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Supplementary Figure 6. Heatmap for correlation between methylation and transcription 

of autophagy-related genes in PCa samples with different GS.  
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Supplementary Figure 7. mRNA levels of DNMT3a in DU145 cells treated with or without 

BI2536 for 0 and 10 hours after the double thymidine blocking.  
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Supplementary Figure 8. Inhibition of Plk1 and DNMT3a suppress DU145-derived 

xenograft tumor growth synergistically. A, Nude mice were inoculated with 22Rv1 cells (2.5 x 

10
5
), treated with BI2536, 5-Aza or both, followed by measurement of tumor size every 4 days 

(means ± SE; n=5). B, Tumors at the end of the study. C, Wet weights of the tumors. D, H&E 

staining of the tumors. (Red arrows: mitotic cells, blue arrows: apoptotic cells). E, IF staining 

against Ki-67 and Cleaved caspase 3. F, Quantification of E. *, 0.01<p<0.05, **, 0.001<p<0.01, 

***, p<0.001. 
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Supplementary Figure 9. A working model depicting mutual regulations between Plk1 and 

DNMT3a during cell cycle in PCa cells.  

In interphase, elevation of DNMT3a results in hypermethylation of Plk1 promotor region and 

suppression of transcription of Plk1. When DNMT3a is inhibited by 5-Aza, suppression of Plk1 

expression will be released due to hypomethylation of its promoter. In addition to the mitotic role 

of Plk1 as a cell cycle related kinase, the regulation of its non-mitotic signaling plays important 

roles in cancer cells as well. As illustrated, Plk1 promotes autophagy independent of its mitotic 

effects whereas DNMT3a inhibits that autophagy by suppressing expression of Plk1. In that case, 

inhibition of DNMT3a by 5-Aza promotes autophagy by elevating Plk1. Elevation of Plk1 

provides targets for Plk1 inhibitor treatment. In mitosis, Plk1 inhibits DNMT3a via 

phosphorylation at S393. Plk1 directly phosphorylates DNMT3a at S393 leading to the 

degradation of DNMT3a. In this case, inhibition of Plk1 by BI2536 stabilizes DNMT3a by 

dephosphorylation at S393 resulting in further inhibition of autophagy. In sum, such novel 

mutual negative regulations between Plk1 and DNMT3a provide a rationale for combination 

treatment with inhibition of Plk1 and DNMT3a in advanced PCa. 
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Supplementary Table 1. Information of PCa specimens in two datasets 

Dataset ID 

Benign 

prostate 

tissues  

Hormone-sensitive CRPC 
Sample 

size 

GS <=6 GS 7 GS 8 GS>=9 Total 

TCGA 52 45 248 64 141 550 

GSE21034 29 80 50 10 10 179 

Note Abbreviations: TCGA: The Cancer Genome Atlas; GDCDP: Genomic Data Commons 

Data Portal; GEO: Gene Expression Omnibus; GS: Gleason Score. 

  

Supplementary Table 2. Crosstalk density calculation to overlapped genes and edges 

Contingency 

table 

Subnetwork 1 Row total 

 0 1  

Subnetwork 2 
0 𝑎 𝑏 𝑎 + 𝑏(= 𝑁 − 𝐾) 

1 𝑐 𝑑(= 𝑋) 𝑐 + 𝑑 (= 𝐾) 

Column total  𝑎 + 𝑐(= 𝑁 − 𝑀) 𝑏 + 𝑑(= 𝑀) 𝑎 + 𝑏 + 𝑐 + 𝑑(= 𝑁) 
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Supplementary Table 9. 7 pairs of genes and 15 single genes are recommended as druggable 

targets to treat advanced prostate cancer 

ID Gene_A Gene_B Trend score Drugs 

1 PSMB2 PSMB5 0.357486018  

2 MAPK8 PARP1 0.501335984  

3 PARP1 SLC25A5 0.553348706  

4 POLD1 PHB 0.539458079  

5 AURKA MELK 0.585705236  

6 PARP1 HDAC1 0.61631213  

7 PLK1 DNMT3A 0.512705236  

8 HPRT1  0.9654064 6-mercaptopurine, thioguanine, azathioprine, 

cyclophosphamide/cytarabine/6-mercaptopurine, 6-

mercaptopurine/prednisone, 6-mercaptopurine/prednisone/thioguanine, 

6-mercaptopurine/methotrexate/tretinoin, daunorubicin/etoposide/6-

mercaptopurine/mitoxantrone/ 

9 AURKB  0.8356063 barasertib, tozasertib, AT-9283, SNS 314, danusertib, TAK-901, 

GSK1070916, CYC 116, TTP607, AMG 900, ilorasertib, chiauranib 

10 PLK1  0.73934 BI 2536, volasertib, GSK461364, rigosertib, MK1496, onvansertib, 

TAK-960, lipid encapsulated anti-PLK1 siRNA TKM-080301 

11 PTK2  0.9971746 BI 853520, lorlatinib, CT-707, TPX-0005 

12 F2R  0.960608 chrysalin, vorapaxar, PAR1 inhibitor, argatroban, bivalirudin 

13 LIMK1  0.9176321 dabrafenib, encorafenib, dabrafenib/trametinib, 

cetuximab/encorafenib, dabrafenib/panitumumab, 

dabrafenib/trametinib/vemurafenib, 

dabrafenib/panitumumab/trametinib, binimetinib/encorafenib, 

dabrafenib/ipilimumab/trametinib 

14 CENPE  0.9981194 GSK923295 

15 KIF11  0.8727248 ispinesib, AZD4877, MK-0731, ARRY-520, SB-743921, litronesib, 

4SC-205, ALN-VSP02 

16 TOP2A  0.9217149 novobiocin, etoposide, teniposide, CPI-0004Na, becatecarin, 

elsamitrucin, AQ4N, elomotecan, tafluposide, fleroxacin, 

cyclophosphamide/epirubicin/5-fluorouracil, cytarabine/daunorubicin, 

finafloxacin, hydrocortisone/mitoxantrone, mitoxantrone/prednisone, c 

17 MELK  0.9367354 OTS167 

18 PARP1  0.9323572 poly ADP ribose polymerase 1 inhibitor, veliparib, rucaparib, olaparib, 

niraparib, talazoparib, E7449, ABT-767, CEP-9722, fluzoparib, 

SC10914, simmiparib, INO-1001, [18F]fluorthanatrace 

19 DHFR  0.9358572 pyrimethamine, trimethoprim, iclaprim, proguanil, 

methotrexate/ofatumumab, methotrexate/sirolimus/tacrolimus, 

pralatrexate, abatacept/methotrexate, infliximab/methotrexate, 

piritrexim, methotrexate/rituximab, golimumab/methotrexate, 

cisplatin/doxorubicin/ 

20 AURKA  0.9146267 tozasertib, MLN8054, alisertib, AT-9283, SNS 314, danusertib, MK 

5108, CYC 116, TTP607, AMG 900, ilorasertib, TAS-119 

21 MAPK3  0.9751645 ulixertinib, LY3214996, KO-947, ASN007, ASTX029 

22 BRAF  0.9978444 vemurafenib, dabrafenib, regorafenib, bortezomib/sorafenib, 

dexamethasone/lenalidomide/sorafenib, bevacizumab/sorafenib, 

encorafenib, dabrafenib/trametinib, CEP-32496, PLX8394, 

cytarabine/idarubicin/sorafenib, 5-azacytidine/sorafenib, 

decitabine/sorafenib 
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Supplementary Table Legends 

Supplementary Table 3.1 Annotation of all samples of PCa patients in TCGA, including 

demographic information, GS, and survival time etc. 

Supplementary Table 3.2 Annotation of all samples of PCa patients in GSE21034, including 

demographic information and GS. 

Supplementary Table 4. The top 400 disease genes related to GS in TCGA. Expressions of all 

these genes have a significant difference between tumor and adjacent normal with a strong 

correlation with GS. 

Supplementary Table 5. The gene expression data of top 400 genes related to GS in TCGA. 

Supplementary Table 6.1. The differential expression rank of genes with different GS in 

comparison of tumor to adjacent normal in TCGA. 

Supplementary Table 6.2. The differential expression rank of genes with different GS in 

comparison of tumor to adjacent normal in GSE21034. 

Supplementary Table 7. The gene expression data of top 1,000 genes with the largest standard 

variation in TCGA.  The average Pearson correlations of these 1,000 gene expression to PSA, 

AR and GS are 0.35, 0.25 and 0.07, respectively. 

Supplementary Table 8.1 The pathway enrichment score (NES, Normal Enrichment Score) of 

tumor versus adjacent normal in TCGA. 

Supplementary Table 8.2 The pathway enrichment score (NES, Normal Enrichment Score) of 

cell death pathway of tumor versus adjacent normal in TCGA with different GS. 

Supplementary Table 8.3 The pathway enrichment score (NES, Normal Enrichment Score) of 

tumor versus adjacent normal in GSE21034, and cell death mode annotation with different GS. 

Supplementary Table 10. The potential co-targets of pairs of pathways during PCa progression 

by Binox analysis. 

Supplementary Table 11. The cross talk molecular mechanism of Plk1 and DNMT3a on a 

differential network. The comparison is between adjacent normal and tumors in TCGA by 

Pearson Correlation to detect the interaction changes of co-expression gene regulation. 

Supplementary Table 12. The cross talk molecular mechanism of Plk1 and DNMT3a on a 

protein-protein interaction network by IPA upstream casual analysis. 
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