953 research outputs found

    Nanorepairers Rescue Inflammation-Induced Mitochondrial Dysfunction in Mesenchymal Stem Cells

    Full text link
    Mitochondrial dysfunction in tissue-specific mesenchymal stem cells (MSCs) plays a critical role in cell fate and the morbidity of chronic inflammation-associated bone diseases, such as periodontitis and osteoarthritis. However, there is still no effective method to cure chronic inflammation-associated bone diseases by physiologically restoring the function of mitochondria and MSCs. Herein, it is first found that chronic inflammation leads to excess Ca2+ transfer from the endoplasmic reticulum to mitochondria, which causes mitochondrial calcium overload and further damage to mitochondria. Furthermore, damaged mitochondria continuously accumulate in MSCs due to the inhibition of mitophagy by activating the Wnt/β-catenin pathway under chronic inflammatory conditions, impairing the differentiation of MSCs. Based on the mechanistic discovery, intracellular microenvironment (esterase and low pH)-responsive nanoparticles are fabricated to capture Ca2+ around mitochondria in MSCs to regulate MSC mitochondrial calcium flux against mitochondrial dysfunction. Furthermore, the same nanoparticles are able to deliver siRNA to MSCs to inhibit the Wnt/β-catenin pathway and regulate mitophagy of the originally dysfunctional mitochondria. These precision-engineered nanoparticles, referred to as “nanorepairers,” physiologically restore the function of mitochondria and MSCs, resulting in effective therapy for periodontitis and osteoarthritis. The concept can potentially be expanded to the treatment of other diseases via mitochondrial quality control intervention

    Compositional and valent state inhomogeneities and ordering of oxygen vacancies in terbium-doped ceria

    Get PDF
    Intragranular distributions of composition and valent state in sintered Tb-doped ceria have been systematically investigated. Through detailed studies of electron energy loss spectroscopy and energy filtering transmission electron microscopy, both compositional and valent state inhomogeneities of Ce and Tb were confirmed, which are related to the existence of nanosized domains in Tb-doped ceria. Compared with their matrix, the domains have higher Tb concentration and Ce and Tb cations in the domains tend to be trivalent. Furthermore, ordering of oxygen vacancies in the domains, which increases with increasing doping concentration, has been determined by EELS. (c) 2007 American Institute of Physics

    Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films

    Full text link
    High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy (MBE). The combination of angle-resolved photoemission (ARPES), scanning tunneling microscopy/spectroscopy (STM/STS), and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional 3D semiconductors, yet small as compared to other 2D transition metal dichalcogennides (TMDCs) semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs

    Hack3D: Crowdsourcing the assessment of cybersecurity in digital manufacturing

    Get PDF
    This article summarizes lessons from the past three Hack3D events, including ways in which engineers can launch surprise attacks on digital manufacturing (DM) designs. A key outcome is a taxonomy-guided security benchmark for the DM community

    Common Warming Pattern Emerges Irrespective of Forcing Location

    Get PDF
    The Earth's climate is changing due to the existence of multiple radiative forcing agents. It is under question whether different forcing agents perturb the global climate in a distinct way. Previous studies have demonstrated the existence of similar climate response patterns in response to aerosol and greenhouse gas (GHG) forcings. In this study, the sensitivity of tropospheric temperature response patterns to surface heating distributions is assessed by forcing an atmospheric general circulation model coupled to an aquaplanet slab ocean with a wide range of possible forcing patterns. We show that a common climate pattern emerges in response to localized forcing at different locations. This pattern, characterized by enhanced warming in the tropical upper troposphere and the polar lower troposphere, resembles the historical trends from observations and models as well as the future projections. Atmospheric dynamics in combination with thermodynamic air-sea coupling are primarily responsible for shaping this pattern. Identifying this common pattern strengthens our confidence in the projected response to GHG and aerosols in complex climate models

    Oxygen-vacancy ordering in lanthanide-doped ceria: Dopant-type dependence and structure model

    Get PDF
    Studies of electron energy loss spectroscopy and selected area electron diffraction (SAED) were systematically performed on 15 and 25 at. % lanthanide (Ln)-doped ceria samples (Ln=Sm, Gd, Dy, and Yb), through which the local ordering of oxygen vacancies that develops with increase in doping level was confirmed in the sequence of (Gd,Sm)>Dy>Yb. Furthermore, a monotone correlation between the development of the ordering and the degradation of ionic conductivity with increasing the doping concentration from 15 to 25 at. % was observed. Based on the analysis of SAED patterns, a structural model for the ordering of oxygen vacancies has been constructed, in which the arrangement of oxygen vacancies is similar to that in C-type Ln2O3 oxides and the 110 pairs of the vacancies are preferred. Then, the factors that can influence the formation of the ordering are discussed

    Recurrent Upper Quadrant Pain: A Fish Bone Secondary to Gastric Perforation and Liver Abscess

    Get PDF
    A 60-year-old male patient was admitted to our hospital for recurrent upper quadrant pain for 1 month. He had a past history of coronary artery disease. After admission, he repeatedly suffered from high-grade fever, chills and upper quadrant pain. Computed tomography (CT) showed a round hypodense mass in the left lobe of the liver, approximately 2.7 × 2.2 cm in size, and a fish bone was confirmed by surgery in the left lobe of liver. The patient was cured completely after surgical removal of the fish bone and liver abscess. CT scan 1 month after discharge showed that the liver abscess had disappeared completely
    corecore