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Abstract Previous studies reported that positive phases of the Indian Ocean Dipole (IOD) tend to accompany
El Niño during boreal autumn. Here we show that the El Niño/IOD relationship can be better understood
when considering two different El Niño flavors. Eastern Pacific El Niño events exhibit a strong correlation with
the IOD dependent on their magnitude. In contrast, the relationship between Central Pacific (CP) El Niño events
and the IOD depends mainly on the zonal location of the sea surface temperature anomalies rather than their
magnitude. CP El Niño events lying farther west than normal are not accompanied by significant anomalous
easterlies over the eastern Indian Ocean along the Java/Sumatra coast, which is unfavorable for the local Bjerknes
feedback and correspondingly for an IOD development. The El Niño/IOD relationship has experienced substantial
changes due to the recent decadal El Niño regime shift, which has important implications for seasonal prediction.

1. Introduction

The El Niño–Southern Oscillation (ENSO) is the dominant low-frequency climate phenomenon resulting from
coupled ocean-atmosphere interactions in the tropical Pacific [e.g., Philander, 1990; Wallace et al., 1998].
Although ENSO originates in the tropical Pacific, its impacts can be detected in remote oceans through the
so-called atmospheric bridge mechanism [e.g., Klein et al., 1999; Alexander et al., 2002; Lau and Nath, 2003].
Especially during the mature (boreal winter) and decaying phases (boreal spring) of El Niño, a basinwide
sea surface temperature (SST) warming appears in the tropical Indian Ocean (IO) due to the ENSO-induced
surface heat flux anomalies [Klein et al., 1999]. In contrast, during the preceding boreal summer and autumn
seasons, a dipole structure of SST anomalies tends to occur in the tropical IO, usually described as the Indian
Ocean Dipole (IOD) [Saji et al., 1999;Webster et al., 1999]. A positive IOD event features SST cooling along the
Java-Sumatra coast and SST warming in the western tropical IO. A positive correlation between the ENSO and
IOD during boreal autumn suggests that IOD events are closely related to ENSO (positive and negative IOD events
usually cooccurred with El Niño and La Niña events, respectively) [e.g., Allan et al., 2001; Baquero-Bernal et al., 2002;
Xie et al., 2002; Annamalai et al., 2003]. However, this argument was challenged by other studies [e.g., Saji et al.,
1999; Webster et al., 1999; Saji and Yamagata, 2003; Meyers et al., 2007], which argued that the IOD is an
independent mode of coupled ocean-atmosphere climate variability in the tropical IO. Although the
ENSO/IOD relationship still remains open to debate, observational and modeling results generally suggest
that the IOD seems to be a relatively weak natural mode, which can be excited by external forcings such as
the ENSO variability [e.g., Li et al., 2003; Scott et al., 2009].

ENSO exhibits a considerable degree of complexity in its zonal SST anomaly structure. The Central Pacific, or CP
El Niño has occurred more frequently in recent decades, which differs considerably from traditional El Niño
events (Eastern Pacific, or EP El Niño) that are characterized by maximum SST anomalies over the eastern equa-
torial Pacific [e.g., Ashok et al., 2007; Kao and Yu, 2009; Kug et al., 2009]. The CP type of El Niño has become
more common while the EP El Niño has occurred less frequently since the 1990s [e.g., Yeh et al., 2009; Xiang
et al., 2013; Zhang et al., 2014]. Whether the IOD experienced changes along with the El Niño regime shift
deserves attention as the IOD can cause substantial climate anomalies over the Asian-Australian monsoon
regions [e.g., Saji and Yamagata, 2003; Meyers et al., 2007; Cai et al., 2009]. Another study further separated
the CP El Niño into two different subtypes based on different SST anomalies over the subtropical northeast-
ern Pacific and argued that these two CP subtypes exhibit different relationships with the IOD [Wang and
Wang, 2014]. At present, the exact relationship between the IOD and the two types of El Niño (EP and CP) is
still not well understood. Here we discuss the different dynamical linkages between these two types of
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El Niño and the IOD. We conclude that the relationship between EP El Niño events and the IOD is mainly
governed by El Niño event amplitude. In contrast, the CP El Niño/IOD relationship is predominantly governed
by the zonal location of El Niño SST anomalies.

2. Data and Methods

The tropical Indo-Pacific SST anomalies were analyzed to demonstrate the ENSO/IOD relationship based on
the Hadley Centre sea ice and SST data set (HadISST) [Rayner et al., 2003]. The associated atmospheric circula-
tionwas investigated using theNational Center for Environmental Prediction/National Center for Atmospheric
Research reanalysis data [Kalnay, 1996]. We also used sea surface height data from the Simple Ocean Data
Assimilation (SODA 2.2.4) reanalysis [Carton et al., 2000]. The anomalies are defined as a departure from the cli-
matologicalmeanof the entire study period (1951–2013) for all data sets, except for the SODAdata set over the
period 1951–2010. A 6–120 month Butterworth band-pass filter is applied to each data set since interannual
variability is our focus and we wish to remove the effects of intraseasonal variability such as the Madden-
Julian Oscillation, as well as variability on multidecadal time scales. The data sets were analyzed for the boreal
autumn season (September-November: SON), when the IOD usually reaches its peak and El Niño is still devel-
oping toward its peak.

The EP and CP El Niño indices (EPI and CPI) were calculated based on a simple transformation [Ren and Jin, 2011]
(also see the supporting information) using Niño3 (SST anomalies averaged over 5°S–5°N and 90°–150°W) and
Niño4 (SST anomalies averaged over 5°S–5°N and 160°E–150°W) from the Climate Prediction Center (CPC). El
Niño events are identified when the EPI or CPI exceeds 0.6 standard deviation during SON (Figure 1). All these
selected events are also identified as El Niño events by the CPC, except for the 1990 warming event, which
has been identified as an El Niño by many other studies [e.g., Ashok et al., 2007; Kug et al., 2009].
Furthermore, the El Niño events with EPI significantly greater than CPI are considered as EP El Niño events,
while those with EPI significantly less than CPI are defined as CP El Niño events. Here, “significance”means
a clear separation of respective error bars for the two El Niño flavors (Figure 1). Therefore, there are eight EP
El Niño events (1951, 1957, 1965, 1972, 1976, 1979, 1982, and 1997) and eight CP El Niño events (1977,
1986, 1990, 1991, 1994, 2002, 2004, and 2009), which are mostly consistent with previous studies [e.g.,
Ashok et al., 2007; Zhang et al., 2011]. The other 5 years (1963, 1969, 1987, 2003, and 2006) are classified
as mixed type El Niño events, which will not be discussed in the remainder of the paper considering the
uncertainty of the classification. Our qualitative conclusions remain the same if we use other CP El Niño
indices, such as the index defined by Ashok et al. [2007].

3. Results

We first examine the El Niño/IOD linkage during boreal autumn (Figure 2a). Here the Niño3.4 index (SST anomalies
averaged over 5°S–5°N and 120°–170°W) is used to measure El Niño intensity. The IOD intensity is captured by

Figure 1. Normalized EPI (red) and CPI (green) during all El Niño boreal autumn (SON) seasons for the 1951–2013 period
(note that El Niño events only are shown, not all years). Error bars represent 0.5 standard deviation error estimates for
EPI and CPI. EP and CP indicate different types of El Niño as described in the text. MIX denotes mixed El Niño events that
cannot be clearly separated into the two types. Units are °C.
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the dipole mode index (DMI) [after Saji et al., 1999], which represents the SST anomaly zonal gradient between
the western equatorial (10°S–10°N and 50°–70°E) and southeastern equatorial IO (10°S–0° and 90°–110°E). A
strong positive correlation (r = 0.67) indicates that a positive IOD usually coincides with El Niño events
and becomes stronger as the intensity of El Niño increases. However, this relationship appears to be caused
by the EP El Niño events rather than the CP El Niño events (Figure 2a), which is further confirmed when
separating El Niño into the two different flavors (Figures 2b and 2c). For the EP El Niño events, the
correlation coefficient between the EPI and IOD attains value as high as 0.96 (statistically significant at
the 99% level even though there are only eight samples), indicating a nearly perfect linear relationship.
In contrast, no significant linear correlation is found for the CP El Niño events (r = 0.16).

Previous studies demonstrated that the atmospheric response is very sensitive to the CP El Niño’s SST anom-
aly zonal location due to the climatological basic state of the Western Pacific Ocean [Zhang et al., 2013, 2015].
Inspired by these works, we examine possible effects of CP El Niño’s SST anomaly zonal location on the IOD.
The longitude of the maximum zonal gradient of the equatorial (5°S–5°N) mean SST anomalies is used to
measure the zonal location of the CP El Niño following the definition of Zhang et al. [2013]. This definition
captures well the location of anomalous rising motion in the atmosphere west of the warm SST anomaly cen-
ter. Here we find a strong linear relationship (r= 0.93) between the CP zonal location and the IOD intensity,
significant at the 99% confidence level. The IOD tends to be weaker as the CP El Niño shifts farther westward.
We also test if the EP El Niño’s zonal location has an impact on the IOD, but we find no robust indication for
this (Figure S1 in the supporting information, r= 0.17).

As seen above, different El Niño flavors exhibit very different linkages with the IOD: the relationship for EP
events depends on the SST anomaly intensity, while the relationship for CP events depends on the SST

Figure 2. Scatter diagrams of DMI (°C) with (a) the Niño3.4 (°C) for both EP (circle) and CP (square) El Niño events, (b) the
intensity (EPI in °C) of EP El Niño events, (c) the intensity (CPI in °C) of CP El Niño events, and (d) longitude (Xt; °E) of CP
El Niño events during autumn. The longitudinal position is defined as the longitude of the maximum zonal gradient of the
equatorial (5°S–5°N) mean SST anomalies. The correlation coefficients in Figures 2a, 2b, and 2d exceed the 99% confidence
level, while correlation coefficient in Figure 2c is not statistically significant at the 80% confidence level.
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anomaly zonal location. Next, we use a composite analysis to explore possible physical mechanisms respon-
sible for the varying El Niño/IOD relationship. We can separate the EP El Niño events with respect to their
intensity during boreal autumn. We composite three strong EP events (SEP: 1972, 1982, and 1997) and five
weak EP events (WEP: 1951, 1957, 1965, 1976, and 1979). The SEP event composite exhibits the typical SST
anomaly pattern of traditional El Niño events over the tropical Pacific, which is characterized by strong warm
SST anomalies in the eastern tropical Pacific and cold SST anomalies in the western tropical Pacific (Figure 3a).
The atmospheric response occurs mainly over the tropical Pacific with strong surface westerly anomalies over
the central and eastern Pacific. Simultaneously, the Walker Circulation weakens with anomalous large-scale
ascending motion east of the dateline and anomalous descending motion over the Indo-Pacific region near
120°E (Figure 3c). Associated with the anomalous sinking motion, a strong anomalous divergence is located
over the Indo-Pacific region in the lower troposphere. The surface easterly anomalies near Java-Sumatra are
effective in enhancing oceanic upwelling and thermocline tilting in the eastern tropical IO, which brings
colder subsurface water to the surface and leads to negative SST anomalies. These cold SST anomalies can
further enhance the surface easterly anomalies through the positive “Bjerknes feedback” loop, which favors
the development and maintenance of the IOD. In comparison, the WEP event composite shows a similar SST
anomaly pattern over the tropical Pacific but with a much weaker intensity (Figure 3b). Thus, we also find
that the associated atmospheric response is weaker for the WEP composite (Figures 3b and 3d). Over the
Indo-Pacific region, we find much weaker sinking motion and surface easterly anomalies over the tropical
IO, which are not effective in initiating the IOD.

Similarly, the CP El Niño events are also separated into two groups: eastward CP El Niño events (ECP: 1991,
1994, and 2002) and westward CP El Niño events (WCP: 1977, 1986, 1990, 2004, and 2009) according to their
SST anomaly zonal locations. The SST anomalies associated with the CP El Niño events are confined to the

Figure 3. Composite SST (shading in °C) and surface wind (vector in m/s) anomalies for (a) strong and (b) weak El Niño
events; (c and d) the same as the Figures 3a and 3b except for the anomalous vertical pressure velocity (shading in
10�2 Pa s�1), Walker Circulation (vector in m s�1; the anomalous vertical velocity beingmultiplied by a factor of�100), and
velocity potential (contour in 106m2 s�1) averaged over 5°S–5°N. The shading and vector are only shown when the values
are significant at the 90% significance level from a two-tailed Student’s t test.
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central tropical Pacific (Figures 4a and 4b), very different from the EP El Niño (Figures 3a and 3b). For the two
groups of CP El Niño events, the WCP composite is located about 15° farther westward compared to the ECP
composite. In agreement, the atmospheric response to the WCP composite is also located farther westward
compared to the ECP composite (Figures 4a–4d). For example, the surface westerly anomalies appear over
the central equatorial Pacific for the ECP events, while they are located over the western and central equator-
ial Pacific for the WCP events (Figures 4a and 4b). For the Walker Circulation, the center of anomalous rising
air is located east of the dateline for the ECP events, whereas it is located west of the dateline for the WCP
events (Figures 4c and 4d). There is no large difference in the location of the anomalous sinking air between
the two groups over the equatorial Indo-Pacific region (Figures 4c and 4d); however, they exhibit different
intensities, which seems inconsistent with the observed difference in surface easterly anomalies over the
eastern IO (Figures 4a and 4b). The zonal wind anomalies are usually located south of the equator over the
eastern IO, which is the upwelling favoring region off Java-Sumatra. To depict the zonal structure more
clearly, we show the surface zonal wind anomalies averaged over the southern equatorial IO (0°–10°S) and
the equatorial Pacific (5°S–5°N) to examine the associated atmospheric response (Figure S2 in the supporting
information). Consistent with the surface wind anomalies in Figures 4a and 4b, the zonal wind anomaly
center is clearly shifted westward for the WCP events over the tropical Pacific in comparison with the ECP
events, and a slight westward displacement is found over the IO. However, over the southeastern equatorial
IO, significant easterly anomalies occur near the Java-Sumatra coast during the ECP events while insignificant
wind anomalies are found in this region during theWCP events. Away from this key upwelling region, the Bjerknes
positive feedback mechanism is weak and cannot effectively produce strong negative SST anomalies over the
eastern equatorial IO. Thus, the IOD is not well developed for the WCP event composite. In contrast, the
ECP-associated easterly anomalies are strong off Java-Sumatra, which favors the establishment of a positive IOD.

The atmospheric responses to the WCP and ECP SST anomaly patterns display a large difference in amplitude
in addition to the zonal location (Figures 4 and S2), which may contribute to the differences in the surface
wind anomalies over the southeastern IO. The anomalous response associated with the WCP events is only

Figure 4. Same as Figure 3, but for the East andWest CP El Niño event composite. The green dot in Figures 4a and 4bmarks the
zonal location of the East andWest El Niño event composite (based on the maximum zonal SST anomaly gradient), respectively.
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about half the amplitude of that associated with the ECP events. The interesting question that remains to be
addressed is why the atmospheric responses exhibit such a large difference in amplitude between the WCP
and ECP event composites despite a similar magnitude of SST anomaly forcing. One possible reason is that
the negative SST anomalies over the far western Pacific during the ECP events are stronger than those during
the WCP (Figures 4a and 4b). The larger SST anomaly gradient could give rise to a stronger local atmospheric
response. Furthermore, a previous theoretical study has demonstrated that the growth rate and period of
ENSO over the tropical Pacific decreases as the surface wind anomaly center is displaced westward [Cane
et al., 1990]. The upwelling Kelvin wave reflected by the upwelling Rossby wave at the western Pacific
boundary during El Niño is more effective at returning the anomalous thermocline to its normal state
when the center of the anomalous air-sea interaction is located farther westward. To confirm this hypoth-
esis, we used the zonal wind anomaly associated with the WCP and ECP to perform a linear regression
on the sea surface height (SSH) anomalies (Figure S3 in the supporting information). Here the regions of
5°S–5°N, 160°–180°E and 5°S–5°N, 150°–170°E are selected as the key areas of anomalous westerly activity for
the ECP and WCP events, respectively, according to their surface wind anomaly patterns (Figures 4a and 4b).
We see that the zonal gradient of the anomalous SSH for the WCP-related surface westerly anomalies is weaker
than that for the ECP. Especially over the western Pacific, the negative equatorial-mean SSH anomalies are much
stronger for the ECP-associated surface westerly anomalies than those for the WCP. It’s notable that the stronger
IOD for the ECP events also contributes to a stronger Walker Circulation response and thus stronger divergence
anomalies over the Indo-Pacific region and zonal surface wind anomalies compared to WCP events. Additionally,
stronger negative cloud radiation feedback could also play a certain role on the weaker atmospheric response
during the WCP than that during the ECP, due to a different background SST pattern.

4. Conclusions and Discussion

A large positive correlation (r= 0.67) is found between the intensity of the El Niño and IOD phenomena dur-
ing the boreal autumn season for 1951–2013. However, this linkage is attributed to Eastern Pacific (EP) El Niño
events rather than Central Pacific (CP) El Niño events. Considering different El Niño flavors, their relationships
with the IOD exhibit very different characteristics. For the EP El Niño type, a near-perfect linear correlation
(r= 0.96) is detected between the El Niño intensity and the simultaneous IOD intensity. Compared to the
strong EP (SEP) events, the weak EP (WEP) events are usually accompanied by a weaker atmospheric response
and thus weaker surface easterly anomalies over the eastern IO. These weak easterly anomalies are not able
to induce a strong local air-sea interaction and thus are not efficient in causing an IOD event. However, the
zonal location of CP El Niño events is highly correlated with the IOD intensity (r= 0.93). Along with the west-
ward movement of the westward CP (WCP) compared to the eastward CP (ECP), the associated atmospheric
anomalies are shifted westward over the tropical Pacific as well. Over the upwelling favoring region off Java-
Sumatra, significant easterly anomalies occur during the ECP events while insignificant wind anomalies are
found during the WCP events. Thus, the Bjerknes positive feedback in the IO cannot effectively be perturbed
during the WCP, resulting in only a weak IOD. It can be seen that the El Niño/IOD relationship experienced a
remarkable change due to the ENSO regime shift. Especially for recent decades when the CP type dominates
the El Niño phenomenon, the zonal location of El Niño events needs to be emphasized to examine the
ENSO/IOD relationship.

A previous study [Wang and Wang, 2014] further separated the CP El Niño into two subtypes and argued
based on composite analysis that one sub-CP type cooccurs with positive phases of the IOD while the other
sub-CP type accompanies negative phases of the IOD. However, no negative values of the DMI (and thus no
negative IOD events) are found in this study (Figure 2d). The difference between their and our results can be
explained by the choice of selected El Niño events and the differing methodologies. For instance, the CP
region exhibits pronounced decadal variability [Zhang et al., 2014], which we removed in our study, as the
interaction between the interannual ENSO phenomenon and the IOD is our focus. It is also noted that they
used normalized IOD values, while raw values are used here. We emphasize the importance of considering
the zonal location of the El Niño events in addition to its amplitude when assessing the interaction of
El Niño with the tropical Indian Ocean.

Another previous study displayed a high consistency between ENSO amplitude and the ENSO/IOD correlation,
especially exhibiting a simultaneous decadal enhancement around the late 1970s [Santoso et al., 2012], which is
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consistent with the EPI/IOD relationship in this study. However, this consistency may be weakened due to more
frequent occurrences of CP El Niño events in the recent decade. This study also sets a further challenge for
forecast models to accurately predict both the amplitude and location of El Niño—our earlier work suggests
that impactful teleconnections greatly depend on whether a CP or EP El Niño occurs [e.g., Zhang et al., 2014]
—but here we go further to suggest that the location of the CP events themselves causes a great variation in
connection to the Indian Ocean. Further efforts are thus required to more realistically capture different
El Niño features in coupled climate models although considerable process has been made [e.g., Guilyardi
et al., 2009; Bellenger et al., 2014].
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