74 research outputs found

    Molecular Mechanisms of Paraptosis Induction: Implications for a Non-Genetically Modified Tumor Vaccine

    Get PDF
    Paraptosis is the programmed cell death pathway that leads to cellular necrosis. Previously, rodent and human monocytes/macrophages killed glioma cells bearing the membrane macrophage colony stimulating factor (mM-CSF) through paraptosis, but the molecular mechanism of this killing process was never identified. We have demonstrated that paraptosis of rat T9 glioma cells can be initiated through a large potassium channel (BK)-dependent process initiated by reactive oxygen species. Macrophage mediated cytotoxicity upon the mM-CSF expressing T9-C2 cells was not prevented by the addition of the caspase inhibitor, zVAD-fmk. By a combination of fluorescent confocal and electron microscopy, flow cytometry, electrophysiology, pharmacology, and genetic knock-down approaches, we demonstrated that these ion channels control cellular swelling and vacuolization of rat T9 glioma cells. Cell lysis is preceded by a depletion of intracellular ATP. Six-hour exposure to BK channel activation caused T9 cells to over express heat shock proteins (Hsp 60, 70, 90 and gp96). This same treatment forced HMGB1 translocation from the nuclear region to the periphery. These last molecules are “danger signals” that can stimulate immune responses. Similar inductions of mitochondrial swelling and increased Hsp70 and 90 expressions by BK channel activation were observed with the non-immunogenic F98 glioma cells. Rats injected with T9 cells which were killed by prolonged BK channel activation developed immunity against the T9 cells, while the injection of x-irradiated apoptotic T9 cells failed to produce the vaccinating effect. These results are the first to show that glioma cellular death induced by prolonged BK channel activation improves tumor immunogenicity; this treatment reproduces the vaccinating effects of mM-CSF transduced cells. Elucidation of strategies as described in this study may prove quite valuable in the development of clinical immunotherapy against cancer

    Trajectories and predictors of response in youth anxiety CBT:Integrative data analysis

    Get PDF
    OBJECTIVE: Integrative data analysis was used to combine existing data from nine trials of cognitive-behavioral therapy (CBT) for anxious youth (N = 832) and identify trajectories of symptom change and predictors of trajectories.METHOD: Youth- and parent-reported anxiety symptoms were combined using item-response theory models. Growth mixture modeling assessed for trajectories of treatment response across pre-, mid-, and posttreatment and 1-year follow-up. Pretreatment client demographic and clinical traits and treatment modality (individual- and family-based CBT) were examined as predictors of trajectory classes.RESULTS: Growth mixture modeling supported three trajectory classes based on parent-reported symptoms: steady responders, rapid responders, and delayed improvement. A 4-class model was supported for youth-reported symptoms: steady responders, rapid responders, delayed improvement, and low-symptom responders. Delayed improvement classes were predicted by higher number of diagnoses (parent and youth report). Receiving family CBT predicted membership in the delayed improvement class compared to all other classes and membership in the steady responder class compared with rapid responders (youth report). Rapid responders were predicted by older age (parent report) and higher number of diagnoses (parent report). Low-symptom responders were more likely to be male (youth report).CONCLUSIONS: Integrative data analysis identified distinct patterns of symptom change. Diagnostic complexity, age, gender, and treatment modality differentiated response classes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).</p

    Allotetraploid Origin and Divergence in Eleusine (Chloridoideae, Poaceae): Evidence from Low-copy Nuclear Gene Phylogenies and a Plastid Gene Chronogram

    Get PDF
    Background and Aims: Eleusine (Poaceae) is a small genus of the subfamily Chloridoideae exhibiting considerable morphological and ecological diversity in East Africa and the Americas. The interspecific phylogenetic relationships of Eleusine are investigated in order to identify its allotetraploid origin, and a chronogram is estimated to infer temporal relationships between palaeoenvironment changes and divergence of Eleusine in East Africa. Methods: Two low-copy nuclear (LCN) markers, Pepc4 and EF-1a, were analysed using parsimony, likelihood and Bayesian approaches. A chronogram of Eleusine was inferred from a combined data set of six plastid DNA markers (ndhA intron, ndhF, rps16-trnK, rps16 intron, rps3, and rpl32-trnL) using the Bayesian dating method. Key Results: The monophyly of Eleusine is strongly supported by sequence data from two LCN markers. In the cpDNA phylogeny, three tetraploid species (E. africana, E. coracana and E. kigeziensis) share a common ancestor with the E. indica–E. tristachya clade, which is considered a source of maternal parents for allotetraploids. Two homoeologous loci are isolated from three tetraploid species in the Pepc4 phylogeny, and the maternal parents receive further support. The A-type EF-1a sequences possess three characters, i.e. a large number of variations of intron 2; clade E-A distantly diverged from clade E-B and other diploid species; and seven deletions in intron 2, implying a possible derivation through a gene duplication event. The crown age of Eleusine and the allotetraploid lineage are 3.89 million years ago (mya) and 1.40 mya, respectively. Conclusions: The molecular data support independent allotetraploid origins for E. kigeziensis and the E. africana–E. coracana clade. Both events may have involved diploids E. indica and E. tristachya as the maternal parents, but the paternal parents remain unidentified. The habitat-specific hypothesis is proposed to explain the divergence of Eleusine and its allotetraploid lineage

    Carrier Screening for Spinal Muscular Atrophy (SMA) in 107,611 Pregnant Women during the Period 2005–2009: A Prospective Population-Based Cohort Study

    Get PDF
    BACKGROUND: Spinal muscular atrophy (SMA) is the most common neuromuscular autosomal recessive disorder. The American College of Medical Genetics has recently recommended routine carrier screening for SMA because of the high carrier frequency (1 in 25-50) as well as the severity of that genetic disease. Large studies are needed to determine the feasibility, benefits, and costs of such a program. METHODS AND FINDINGS: This is a prospective population-based cohort study of 107,611 pregnant women from 25 counties in Taiwan conducted during the period January 2005 to June 2009. A three-stage screening program was used: (1) pregnant women were tested for SMA heterozygosity; (2) if the mother was determined to be heterozygous for SMA (carrier status), the paternal partner was then tested; (3) if both partners were SMA carriers, prenatal diagnostic testing was performed. During the study period, a total of 2,262 SMA carriers with one copy of the SMN1 gene were identified among the 107,611 pregnant women that were screened. The carrier rate was approximately 1 in 48 (2.10%). The negative predictive value of DHPLC coupled with MLPA was 99.87%. The combined method could detect approximately 94% of carriers because most of the cases resulted from a common single deletion event. In addition, 2,038 spouses were determined to be SMA carriers. Among those individuals, 47 couples were determined to be at high risk for having offspring with SMA. Prenatal diagnostic testing was performed in 43 pregnant women (91.49%) and SMA was diagnosed in 12 (27.91%) fetuses. The prevalence of SMA in our population was 1 in 8,968. CONCLUSION: The main benefit of SMA carrier screening is to reduce the burden associated with giving birth to an affected child. In this study, we determined the carrier frequency and genetic risk and provided carrier couples with genetic services, knowledge, and genetic counseling

    Fluorescent Labeling of Newborn Dentate Granule Cells in GAD67-GFP Transgenic Mice: A Genetic Tool for the Study of Adult Neurogenesis

    Get PDF
    Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
    corecore