8 research outputs found

    Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria

    Get PDF
    Symbiotic bacteria are responsible for the majority of complex carbohydrate digestion in the human colon. Since the identities and amounts of dietary polysaccharides directly impact the gut microbiota, determining which microorganisms consume specific nutrients is central for defining the relationship between diet and gut microbial ecology. Using a custom phenotyping array, we determined carbohydrate utilization profiles for 354 members of the Bacteroidetes, a dominant saccharolytic phylum. There was wide variation in the numbers and types of substrates degraded by individual bacteria, but phenotype-based clustering grouped members of the same species indicating that each species performs characteristic roles. The ability to utilize dietary polysaccharides and endogenous mucin glycans was negatively correlated, suggesting exclusion between these niches. By analyzing related Bacteroides ovatus/Bacteroides xylanisolvens strains that vary in their ability to utilize mucin glycans, we addressed whether gene clusters that confer this complex, multilocus trait are being gained or lost in individual strains. Pangenome reconstruction of these strains revealed a remarkably mosaic architecture in which genes involved in polysaccharide metabolism are highly variable and bioinformatics data provide evidence of interspecies gene transfer that might explain this genomic heterogeneity. Global transcriptomic analyses suggest that the ability to utilize mucin has been lost in some lineages of B. ovatus and B. xylanisolvens, which harbor residual gene clusters that are involved in mucin utilization by strains that still actively express this phenotype. Our data provide insight into the breadth and complexity of carbohydrate metabolism in the microbiome and the underlying genomic events that shape these behaviors

    Exited Prostitution Survivor Policy Platform

    Get PDF
    Survivors of prostitution propose a policy reform platform including three main pillars of priority: criminal justice reforms, fair employment, and standards of care. The sexual exploitation of prostituted individuals has lasting effects which can carry over into many aspects of life. In order to remedy these effects and give survivors the opportunity to live a full and free life, we must use a survivor-centered approach to each of these pillars to create change. First, reform is necessary in the criminal justice system to recognize survivors as victims of crime and not perpetrators, while holding those who exploited them fully responsible. Second, reform is necessary to assist survivors in finding fair employment by offering vocational training, financial counseling, and educational scholarships, as well as offering employment opportunities that utilize survivors’ vast array of skills and interests. Finally, standards of care for survivors exiting prostitution should focus on supporting survivors in our journeys and support short- and long-term resources that empower us. These systemic changes are necessary to recognize survivors as the valuable human beings we are and to support survivors in fulfilling our vast potential

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria

    Get PDF
    International audienceNonharmful bacteria are the primary microbial symbionts that inhabit the human gastrointestinal tract. These bacteria play many beneficial roles and in some cases can modify disease states, making it important to understand which nutrients sustain specific lineages

    Culture conditions greatly impact the levels of vesicular and extravesicular Ago2 and RNA in extracellular vesicle preparations

    No full text
    Abstract Extracellular vesicle (EV)‐carried miRNAs can influence gene expression and functional phenotypes in recipient cells. Argonaute 2 (Ago2) is a key miRNA‐binding protein that has been identified in EVs and could influence RNA silencing. However, Ago2 is in a non‐vesicular form in serum and can be an EV contaminant. In addition, RNA‐binding proteins (RBPs), including Ago2, and RNAs are often minor EV components whose sorting into EVs may be regulated by cell signaling state. To determine the conditions that influence detection of RBPs and RNAs in EVs, we evaluated the effect of growth factors, oncogene signaling, serum, and cell density on the vesicular and nonvesicular content of Ago2, other RBPs, and RNA in small EV (SEV) preparations. Media components affected both the intravesicular and extravesicular levels of RBPs and miRNAs in EVs, with serum contributing strongly to extravesicular miRNA contamination. Furthermore, isolation of EVs from hollow fiber bioreactors revealed complex preparations, with multiple EV‐containing peaks and a large amount of extravesicular Ago2/RBPs. Finally, KRAS mutation impacts the detection of intra‐ and extra‐vesicular Ago2. These data indicate that multiple cell culture conditions and cell states impact the presence of RBPs in EV preparations, some of which can be attributed to serum contamination

    Epigenetic targets for novel therapies of lung diseases

    No full text

    The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges

    No full text
    corecore