121 research outputs found

    A Nationwide Study of Maternal Exposure To Ambient Ozone and Term Birth Weight In the United States

    Get PDF
    Background: Maternal exposure to ozone (O3) may cause systemic inflammation and oxidative stress and contribute to fetal growth restriction. We sought to estimate the association between maternal exposure to O3 and term birth weight and term small for gestational age (SGA) in the United States (US). Methods: We conducted a nationwide study including 2,179,040 live term singleton births that occurred across 453 populous counties in the contiguous US in 2002. Daily county-level concentrations of O3 data were estimated using a Bayesian fusion model. We used linear regression to estimate the association between O3 exposure and term birth weight and logistic regression to estimate the association between O3 exposure and term SGA during each trimester of the pregnancy and the entire pregnancy after adjusting for maternal characteristics, infant sex, season of conception, ambient temperature, county poverty rate, and census region. We additionally used distributed lag models to identify the critical exposure windows by estimating the monthly and weekly associations. Results: A 10 parts per billion (ppb) increase in O3 over the entire pregnancy was associated with a lower term birth weight (-7.6 g; 95 % CI: −8.8 g, −6.4 g) and increased risk of SGA (odds ratio = 1.030; 95 % CI: 1.020, 1.040). The identified critical exposure windows were the 13th- 25th and 32nd −37th gestational weeks for term birth weight and 13th- 25th for term SGA. We found the association was more pronounced among mothers who were non-Hispanic Black, unmarried, or had lower education level. Conclusions: Among US singleton term births, maternal exposure to O3 was associated with lower rates of fetal growth, and the 13th- 25th gestational weeks were the identified critical exposure windows

    Dose-effect relationship analysis of TCM based on deep Boltzmann machine and partial least squares

    Get PDF
    A dose-effect relationship analysis of traditional Chinese Medicine (TCM) is crucial to the modernization of TCM. However, due to the complex and nonlinear nature of TCM data, such as multicollinearity, it can be challenging to conduct a dose-effect relationship analysis. Partial least squares can be applied to multicollinearity data, but its internally extracted principal components cannot adequately express the nonlinear characteristics of TCM data. To address this issue, this paper proposes an analytical model based on a deep Boltzmann machine (DBM) and partial least squares. The model uses the DBM to extract nonlinear features from the feature space, replaces the components in partial least squares, and performs a multiple linear regression. Ultimately, this model is suitable for analyzing the dose-effect relationship of TCM. The model was evaluated using experimental data from Ma Xing Shi Gan Decoction and datasets from the UCI Machine Learning Repository. The experimental results demonstrate that the prediction accuracy of the model based on the DBM and partial least squares method is on average 10% higher than that of existing methods

    Phosphomolybdic acid-responsive Pickering emulsions stabilized by ionic liquid functionalized Janus nanosheets

    Get PDF
    <p><b>A</b> Representative photomicrographs of Caspase-3 immunofluorescence staining (400×). <b>B</b> Quantification of Caspase-3 fluorescence intensity in different groups. <b>C</b> Representative Western blot band of Caspase-3 activation in the ischemic cortex at 24 h after reperfusion. <b>D</b> Effect of LBP (40 mg/kg) on the Caspase-3 activation in MCAO mice cortex at 24 h after reperfusion. Data are expressed as mean±SEM (n = 6). <sup>##</sup>P<0.01 vs. sham-operated group; **P<0.01 vs. vehicle group.</p

    Education in ecological engineering—a need whose time has come

    Get PDF
    OVERCOMING LIMITATIONS OF ECOLOGY AND ENGINEERING IN ADDRESSING SOCIETY’S CHALLENGES : By providing an integrated, systems-approach to problem-solving that incorporates ecological principles in engineering design, ecological engineering addresses, many of the limitations of Ecology and Engineering needed to work out how people and nature can beneficially coexist on planet Earth. Despite its origins in the 1950s, ecological engineering remains a niche discipline, while at the same time, there has never been a greater need to combine the rigour of engineering and science with the systems-approach of ecology for pro-active management of Earth’s biodiversity and environmental life-support systems. Broad consensus on the scope and defining elements of ecological engineering and development of a globally consistent ecological engineering curriculum are key pillars to mainstream recognition of the discipline and practice of ecological engineering. THE IMPORTANCE OF ECOLOGICAL ENGINEERING IN SOCIETY : In this paper, the importance of ecological engineering education is discussed in relation to the perceived need of our society to address global challenges of sustainable development. The perceived needs of industry, practitioners, educators and students for skills in ecological engineering are also discussed. THE IMPORTANCE AND NEED FOR ECOLOGICAL ENGINEERING EDUCATION : The need for integrative, interdisciplinary education is discussed in relation to the scope of ecology, engineering and the unique role of ecological engineering. SCOPE FOR A UNIVERSALLY RECOGNISED CURRICULUM IN ECOLOGICAL ENGINEERING : The scope for a universally recognised curriculum in ecological engineering is presented. The curriculum recognises a set of overarching principles and concepts that unite multiple application areas of ecological engineering practice. The integrative, systems-based approach of ecological engineering distinguishes it from the trend toward narrow specialisation in education. It is argued that the systems approach to conceptualising problems of design incorporating ecological principles is a central tenant of ecological engineering practice. CHALLENGES TO WIDER ADOPTION OF ECOLOGICAL ENGINEERING AND OPPORTUNITIES TO INCREASE ADOPTION : Challenges and structural barriers to wider adoption of ecological engineering principles, embedded in our society’s reliance on technological solutions to environmental problems, are discussed along with opportunities to increase adoption of ecological engineering practice. It is suggested that unifying the numerous specialist activity areas and applications of ecological engineering under an umbrella encompassing a set of core principles, approaches, tools and way of thinking is required to distinguish ecological engineering from other engineering disciplines and scale up implementation of the discipline. It is concluded that these challenges can only be realised if ecological engineering moves beyond application by a relatively small band of enthusiastic practitioners, learning by doing, to the education of future cohorts of students who will become tomorrow’s engineers, project managers, procurement officers and decision makers, applying principles informed by a growing body of theory and knowledge generated by an active research community, a need whose time has come, if we are to deploy all tools at our disposal toward addressing the grand challenge of creating a sustainable future.Open access funding provided by ZHAW Zurich University of Applied Sciences.https://www.springer.com/journal/43615hj2022Plant Production and Soil Scienc

    ROR1 Is Expressed in Human Breast Cancer and Associated with Enhanced Tumor-Cell Growth

    Get PDF
    Receptor-tyrosine-kinase-like orphan receptor 1 (ROR1) is expressed during embryogenesis and by certain leukemias, but not by normal adult tissues. Here we show that the neoplastic cells of many human breast cancers express the ROR1 protein and high-level expression of ROR1 in breast adenocarcinoma was associated with aggressive disease. Silencing expression of ROR1 in human breast cancer cell lines found to express this protein impaired their growth in vitro and also in immune-deficient mice. We found that ROR1 could interact with casein kinase 1 epsilon (CK1Δ) to activate phosphoinositide 3-kinase-mediated AKT phosphorylation and cAMP-response-element-binding protein (CREB), which was associated with enhanced tumor-cell growth. Wnt5a, a ligand of ROR1, could induce ROR1-dependent signaling and enhance cell growth. This study demonstrates that ROR1 is expressed in human breast cancers and has biological and clinical significance, indicating that it may be a potential target for breast cancer therapy

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
    • 

    corecore