2,679 research outputs found

    Nuclear proteome response to cell wall removal in rice (Oryza sativa)

    Get PDF
    Plant cells are routinely exposed to various pathogens and environmental stresses that cause cell wall perturbations. Little is known of the mechanisms that plant cells use to sense these disturbances and transduce corresponding signals to regulate cellular responses to maintain cell wall integrity. Previous studies in rice have shown that removal of the cell wall leads to substantial chromatin reorganization and histone modification changes concomitant with cell wall re-synthesis. But the genes and proteins that regulate these cellular responses are still largely unknown. Here we present an examination of the nuclear proteome differential expression in response to removal of the cell wall in rice suspension cells using multiple nuclear proteome extraction methods. A total of 382 nuclear proteins were identified with two or more peptides, including 26 transcription factors. Upon removal of the cell wall, 142 nuclear proteins were up regulated and 112 were down regulated. The differentially expressed proteins included transcription factors, histones, histone domain containing proteins, and histone modification enzymes. Gene ontology analysis of the differentially expressed proteins indicates that chromatin & nucleosome assembly, protein-DNA complex assembly, and DNA packaging are tightly associated with cell wall removal. Our results indicate that removal of the cell wall imposes a tremendous challenge to the cells. Consequently, plant cells respond to the removal of the cell wall in the nucleus at every level of the regulatory hierarchy.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Synergism and rules from combination of Baicalin, Jasminoidin and Desoxycholic acid in refined Qing Kai Ling for treat ischemic stroke mice model.

    Get PDF
    Refined Qing-Kai-Ling (QKL), a modified Chinese medicine, consists of three main ingredients (Baicalin, Jasminoidin and Desoxycholic acid), plays a synergistic effect on the treatment of the acute stage of ischemic stroke. However, the rules of the combination and synergism are still unknown. Based on the ischemic stroke mice model, all different kinds of combination of Baicalin, Jasminoidin, and Desoxycholic acid were investigated by the methods of neurological examination, microarray, and genomics analysis. As a result, it confirmed that the combination of three drugs offered a better therapeutical effect on ischemic stroke than monotherapy of each drug. Additionally, we used Ingenuity pathway Analysis (IPA) and principal component analysis (PCA) to extract the dominant information of expression changes in 373 ischemia-related genes. The results suggested that 5 principal components (PC1-5) could account for more than 95% energy in the gene data. Moreover, 3 clusters (PC1, PC2+PC5, and PC3+PC4) were addressed with cluster analysis. Furthermore, we matched PCs on the drug-target networks, the findings demonstrated that Baicalin related with PC1 that played the leading role in the combination; Jasminoidin related with PC2+PC5 that played a compensatory role; while Desoxycholic acid had the least performance alone which could relate with PC3+PC4 that played a compatible role. These manifestations were accorded with the principle of herbal formulae of Traditional Chinese Medicine (TCM), emperor-minister-adjuvant-courier. In conclusion, we firstly provided scientific evidence to the classic theory of TCM formulae, an initiating holistic viewpoint of combination therapy of TCM. This study also illustrated that PCA might be an applicable method to analyze the complicated data of drug combination

    Wolfberry genomes and the evolution of Lycium (Solanaceae)

    Get PDF
    AbstractWolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.</jats:p

    Association of FADS1/2 Locus Variants and Polyunsaturated Fatty Acids With Aortic Stenosis.

    Get PDF
    IMPORTANCE: Aortic stenosis (AS) has no approved medical treatment. Identifying etiological pathways for AS could identify pharmacological targets. OBJECTIVE: To identify novel genetic loci and pathways associated with AS. DESIGN, SETTING, AND PARTICIPANTS: This genome-wide association study used a case-control design to evaluate 44 703 participants (3469 cases of AS) of self-reported European ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (from January 1, 1996, to December 31, 2015). Replication was performed in 7 other cohorts totaling 256 926 participants (5926 cases of AS), with additional analyses performed in 6942 participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Follow-up biomarker analyses with aortic valve calcium (AVC) were also performed. Data were analyzed from May 1, 2017, to December 5, 2019. EXPOSURES: Genetic variants (615 643 variants) and polyunsaturated fatty acids (ω-6 and ω-3) measured in blood samples. MAIN OUTCOMES AND MEASURES: Aortic stenosis and aortic valve replacement defined by electronic health records, surgical records, or echocardiography and the presence of AVC measured by computed tomography. RESULTS: The mean (SD) age of the 44 703 GERA participants was 69.7 (8.4) years, and 22 019 (49.3%) were men. The rs174547 variant at the FADS1/2 locus was associated with AS (odds ratio [OR] per C allele, 0.88; 95% CI, 0.83-0.93; P = 3.0 × 10-6), with genome-wide significance after meta-analysis with 7 replication cohorts totaling 312 118 individuals (9395 cases of AS) (OR, 0.91; 95% CI, 0.88-0.94; P = 2.5 × 10-8). A consistent association with AVC was also observed (OR, 0.91; 95% CI, 0.83-0.99; P = .03). A higher ratio of arachidonic acid to linoleic acid was associated with AVC (OR per SD of the natural logarithm, 1.19; 95% CI, 1.09-1.30; P = 6.6 × 10-5). In mendelian randomization, increased FADS1 liver expression and arachidonic acid were associated with AS (OR per unit of normalized expression, 1.31 [95% CI, 1.17-1.48; P = 7.4 × 10-6]; OR per 5-percentage point increase in arachidonic acid for AVC, 1.23 [95% CI, 1.01-1.49; P = .04]; OR per 5-percentage point increase in arachidonic acid for AS, 1.08 [95% CI, 1.04-1.13; P = 4.1 × 10-4]). CONCLUSIONS AND RELEVANCE: Variation at the FADS1/2 locus was associated with AS and AVC. Findings from biomarker measurements and mendelian randomization appear to link ω-6 fatty acid biosynthesis to AS, which may represent a therapeutic target

    EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epithelial to mesenchymal transition (EMT) is a molecular process through which an epithelial cell undergoes transdifferentiation into a mesenchymal phenotype. The role of EMT in embryogenesis is well-characterized and increasing evidence suggests that elements of the transition may be important in other processes, including metastasis and drug resistance in various different cancers.</p> <p>Methods</p> <p>Agilent 4 × 44 K whole human genome arrays and selected reaction monitoring mass spectrometry were used to investigate mRNA and protein expression in A2780 cisplatin sensitive and resistant cell lines. Invasion and migration were assessed using Boyden chamber assays. Gene knockdown of <it>snail </it>and <it>slug </it>was done using targeted siRNA. Clinical relevance of the EMT pathway was assessed in a cohort of primary ovarian tumours using data from Affymetrix GeneChip Human Genome U133 plus 2.0 arrays.</p> <p>Results</p> <p>Morphological and phenotypic hallmarks of EMT were identified in the chemoresistant cells. Subsequent gene expression profiling revealed upregulation of EMT-related transcription factors including <it>snail, slug, twist2 </it>and <it>zeb2</it>. Proteomic analysis demonstrated up regulation of Snail and Slug as well as the mesenchymal marker Vimentin, and down regulation of E-cadherin, an epithelial marker. By reducing expression of <it>snail </it>and <it>slug</it>, the mesenchymal phenotype was largely reversed and cells were resensitized to cisplatin. Finally, gene expression data from primary tumours mirrored the finding that an EMT-like pathway is activated in resistant tumours relative to sensitive tumours, suggesting that the involvement of this transition may not be limited to <it>in vitro </it>drug effects.</p> <p>Conclusions</p> <p>This work strongly suggests that genes associated with EMT may play a significant role in cisplatin resistance in ovarian cancer, therefore potentially leading to the development of predictive biomarkers of drug response or novel therapeutic strategies for overcoming drug resistance.</p

    The BioMart community portal: an innovative alternative to large, centralized data repositories.

    Get PDF
    The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations

    Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study

    Get PDF
    Epidemiological studies have reported inconsistent associations between telomere length (TL) and risk for various cancers. These inconsistencies are likely attributable, in part, to biases that arise due to post-diagnostic and post-treatment TL measurement. To avoid such biases, we used a Mendelian randomization approach and estimated associations between nine TL-associated SNPs and risk for five common cancer types (breast, lung, colorectal, ovarian and prostate cancer, including subtypes) using data on 51 725 cases and 62 035 controls. We then used an inverse-variance weighted average of the SNP-specific associations to estimate the association between a genetic score representing long TL and cancer risk. The long TL genetic score was significantly associated with increased risk of lung adenocarcinoma (P = 6.3 × 10−15), even after exclusion of a SNP residing in a known lung cancer susceptibility region (TERT-CLPTM1L) P = 6.6 × 10−6). Under Mendelian randomization assumptions, the association estimate [odds ratio (OR) = 2.78] is interpreted as the OR for lung adenocarcinoma corresponding to a 1000 bp increase in TL. The weighted TL SNP score was not associated with other cancer types or subtypes. Our finding that genetic determinants of long TL increase lung adenocarcinoma risk avoids issues with reverse causality and residual confounding that arise in observational studies of TL and disease risk. Under Mendelian randomization assumptions, our finding suggests that longer TL increases lung adenocarcinoma risk. However, caution regarding this causal interpretation is warranted in light of the potential issue of pleiotropy, and a more general interpretation is that SNPs influencing telomere biology are also implicated in lung adenocarcinoma risk
    • 

    corecore