9 research outputs found

    Surface rupture of multiple crustal faults in the 2016 Mw 7.8 Kaikōura, New Zealand, earthquake

    Get PDF
    Multiple (>20 >20 ) crustal faults ruptured to the ground surface and seafloor in the 14 November 2016 M w Mw 7.8 Kaikōura earthquake, and many have been documented in detail, providing an opportunity to understand the factors controlling multifault ruptures, including the role of the subduction interface. We present a summary of the surface ruptures, as well as previous knowledge including paleoseismic data, and use these data and a 3D geological model to calculate cumulative geological moment magnitudes (M G w MwG ) and seismic moments for comparison with those from geophysical datasets. The earthquake ruptured faults with a wide range of orientations, sense of movement, slip rates, and recurrence intervals, and crossed a tectonic domain boundary, the Hope fault. The maximum net surface displacement was ∼12  m ∼12  m on the Kekerengu and the Papatea faults, and average displacements for the major faults were 0.7–1.5 m south of the Hope fault, and 5.5–6.4 m to the north. M G w MwG using two different methods are M G w MwG 7.7 +0.3 −0.2 7.7−0.2+0.3 and the seismic moment is 33%–67% of geophysical datasets. However, these are minimum values and a best estimate M G w MwG incorporating probable larger slip at depth, a 20 km seismogenic depth, and likely listric geometry is M G w MwG 7.8±0.2 7.8±0.2 , suggests ≤32% ≤32% of the moment may be attributed to slip on the subduction interface and/or a midcrustal detachment. Likely factors contributing to multifault rupture in the Kaikōura earthquake include (1) the presence of the subduction interface, (2) physical linkages between faults, (3) rupture of geologically immature faults in the south, and (4) inherited geological structure. The estimated recurrence interval for the Kaikōura earthquake is ≥5,000–10,000  yrs ≥5,000–10,000  yrs , and so it is a relatively rare event. Nevertheless, these findings support the need for continued advances in seismic hazard modeling to ensure that they incorporate multifault ruptures that cross tectonic domain boundaries

    Surface Fault Rupture and Slip Distribution of the Jordan-Kekerengu-Needles Fault Network during the 2016 Mw 7.8 Kaikōura Earthquake, New Zealand

    No full text
    During the 2016, Mw 7.8 Kaikōura earthquake the Kekerengu fault ruptured the ground surface producing a maximum of ~12 m of net displacement (dextral-slip with minor reverse- slip), one of the largest five co-seismic surface rupture displacements so far observed globally. This thesis presents the first combined onshore to offshore dataset of co-seismic ground-surface and vertical seabed displacements along a near-continuous ~83 km long strike-slip dominated earthquake surface rupture of large slip magnitude. Onshore on the Kekerengu, Jordan Thrust, Upper Kowhai, and Manakau faults, we measured the displacement of 117 cultural and natural markers in the field and using airborne LiDAR data. Offshore on the dextral-reverse Needles fault, multibeam bathymetric and high-resolution seismic reflection data image a throw of the seabed of up to 3.5±0.2 m. Mean net slip on the total ~83 km rupture was 5.5±1 m, this is an unusually large mean slip for the rupture length compared to global strike-slip surface ruptures. Surveyed linear features that extend across the entire surface rupture zone show that it varies in width from 13 to 122 m. These cultural features also reveal the across-strike distribution of lateral displacement, 80% of which is, on average, concentrated within the central 43% of the rupture zone. Combining the near-field measurements of fault offset with published, far-field InSAR, continuous GPS, and coastal deformation data, suggests partitioning of oblique plate convergence, with a significant portion of co-seismic contractional deformation (and uplift) being accommodated off-fault in the hanging-wall crust to the northwest of the main rupturing faults. This thesis also documents in detail the onshore extent of surface fault rupture on the Kekerengu, Jordan Thrust, Upper Kowhai and Manakau faults. I present large-scale maps (up to 1:3,000) and documentary field photographs of this 53 km-long onshore surface rupture zone utilizing field data, post-earthquake LiDAR-derived Digital Elevation Models (DEMs), and post-earthquake ortho-rectified aerial photography. Ground deformation data is most detailed near the Marlborough coast where the 2016 rupture trace is well-exposed on agricultural grassland on the Kekerengu fault. In the southwest, where surface fault rupture traversed the alpine slopes of the Seaward Kaikoura ranges, fault mapping relied heavily on the LiDAR-derived DEMs. At 24 sites along the Kekerengu fault, I document co-seismic wear striae that were formed during the earthquake and were preserved on free face fault exposures. Nearly all of these striae were distinctly curved along their length, demonstrating that the direction of near-surface fault slip changed with time during rupture of the Kekerengu fault. Co-seismic displacement on the Kekerengu fault initiated as oblique-dextral (mainly dextral-reverse), and subsequently rotated to become nearly-pure dextral slip. These slip trajectories agree with directions of net displacements derived from offset linear features at nearby sites. Temporal rotation of the slip direction may suggest a state of low shear stress on the Kekerengu fault before the earthquake, and a near-complete reduction in stress during the earthquake, as has been inferred for other historic earthquakes that show evidence for changing slip direction with time

    Surface Fault Rupture and Slip Distribution of the Jordan-Kekerengu-Needles Fault Network during the 2016 Mw 7.8 Kaikōura Earthquake, New Zealand

    No full text
    During the 2016, Mw 7.8 Kaikōura earthquake the Kekerengu fault ruptured the ground surface producing a maximum of ~12 m of net displacement (dextral-slip with minor reverse- slip), one of the largest five co-seismic surface rupture displacements so far observed globally. This thesis presents the first combined onshore to offshore dataset of co-seismic ground-surface and vertical seabed displacements along a near-continuous ~83 km long strike-slip dominated earthquake surface rupture of large slip magnitude. Onshore on the Kekerengu, Jordan Thrust, Upper Kowhai, and Manakau faults, we measured the displacement of 117 cultural and natural markers in the field and using airborne LiDAR data. Offshore on the dextral-reverse Needles fault, multibeam bathymetric and high-resolution seismic reflection data image a throw of the seabed of up to 3.5±0.2 m. Mean net slip on the total ~83 km rupture was 5.5±1 m, this is an unusually large mean slip for the rupture length compared to global strike-slip surface ruptures. Surveyed linear features that extend across the entire surface rupture zone show that it varies in width from 13 to 122 m. These cultural features also reveal the across-strike distribution of lateral displacement, 80% of which is, on average, concentrated within the central 43% of the rupture zone. Combining the near-field measurements of fault offset with published, far-field InSAR, continuous GPS, and coastal deformation data, suggests partitioning of oblique plate convergence, with a significant portion of co-seismic contractional deformation (and uplift) being accommodated off-fault in the hanging-wall crust to the northwest of the main rupturing faults. This thesis also documents in detail the onshore extent of surface fault rupture on the Kekerengu, Jordan Thrust, Upper Kowhai and Manakau faults. I present large-scale maps (up to 1:3,000) and documentary field photographs of this 53 km-long onshore surface rupture zone utilizing field data, post-earthquake LiDAR-derived Digital Elevation Models (DEMs), and post-earthquake ortho-rectified aerial photography. Ground deformation data is most detailed near the Marlborough coast where the 2016 rupture trace is well-exposed on agricultural grassland on the Kekerengu fault. In the southwest, where surface fault rupture traversed the alpine slopes of the Seaward Kaikoura ranges, fault mapping relied heavily on the LiDAR-derived DEMs. At 24 sites along the Kekerengu fault, I document co-seismic wear striae that were formed during the earthquake and were preserved on free face fault exposures. Nearly all of these striae were distinctly curved along their length, demonstrating that the direction of near-surface fault slip changed with time during rupture of the Kekerengu fault. Co-seismic displacement on the Kekerengu fault initiated as oblique-dextral (mainly dextral-reverse), and subsequently rotated to become nearly-pure dextral slip. These slip trajectories agree with directions of net displacements derived from offset linear features at nearby sites. Temporal rotation of the slip direction may suggest a state of low shear stress on the Kekerengu fault before the earthquake, and a near-complete reduction in stress during the earthquake, as has been inferred for other historic earthquakes that show evidence for changing slip direction with time

    The Mw7.8 2016 Kaikoura earthquake: surface fault rupture and seismic hazard context

    No full text
    We provide a summary of the surface fault ruptures produced by the Mw7.8 14 November 2016 Kaikōura earthquake, including examples of damage to engineered structures, transportation networks and farming infrastructure produced by direct fault surface rupture displacement. We also provide an overview of the earthquake in the context of the earthquake source model and estimated ground motions from the current (2010) version of the National Seismic Hazard Model (NSHM) for New Zealand. A total of 21 faults ruptured along a c.180 km long zone during the earthquake, including some that were unknown prior to the event. The 2010 version of the NSHM had considered multi-fault ruptures in the Kaikōura area, but not to the degree observed in the earthquake. The number of faults involved a combination of known and unknown faults, a mix of complete and partial ruptures of the known faults, and the non-involvement of a major fault within the rupture zone (i.e. the Hope Fault) makes this rupture an unusually complex event by world standards. However, the strong ground motions of the earthquake are consistent with the high hazard of the Kaikōura area shown in maps produced from the NSHM

    Surface Rupture of Multiple Crustal Faults in the 2016 Mw 7.8 Kaikōura, New Zealand, Earthquake

    No full text
    corecore