97 research outputs found

    Student Evaluation Of A Digital Learning Game

    Get PDF
    Data from 294 post-graduate students studying business administration were analysed to determine perceptions toward digital learning games. This research can be used as a conceptual model of how to react to new methods of instruction. 25 subject (game) related and 21 tutor related attributes made up the course evaluation form. Preliminary findings suggest a Halo effect in form of student’s perception of the tutor being influenced by the subject, vice versa. Although the overall evaluation of both, game and tutor, were on average very positive, there were distinct differences between clusters

    On the security, privacy and usability of online seals

    Get PDF
    This report analyses the conditions under which online security and privacy seals (OSPS) can be deployed to support users to make an informed trust decision about Web services and their providers with respect to the provided security and privacy. This report is motivated by the numerous policy documents, that mention marks, seals, logos, icons, (collectively referred as OSPS) as a mean enabling users to judge on the trustworthiness of services offered on the Web. The field of OSPSs has also developed in maturity. Therefore, we aim at analysing the current situation and identified key challenges for online signals in practise. Based on these challenges, this report identifies possible solutions and corresponding recommendations and next steps that ENISA and other stakeholders should follow for enabling users in judging on the trustworthiness of services offered on the Web

    Nimodipine vs. Milrinone – Equal or Complementary Use? A Retrospective Analysis

    Get PDF
    Background: Cerebral vasospasm (CVS) continues to account for high morbidity and mortality in patients surviving the initial aneurysmal subarachnoid hemorrhage (SAH). Nimodipine is the only drug known to reduce delayed cerebral ischemia (DCI), but it is believed not to affect large vessel CVS. Milrinone has emerged as a promising option. Our retrospective study focused on the effectiveness of the intra-arterial application of both drugs in monotherapy and combined therapy. Methods: We searched for patients with aneurysmal SAH, angiographically confirmed CVS, and at least one intra-arterial pharmacological angioplasty. Ten defined vessel sections on angiograms were assessed before and after vasodilator infusion. The improvement in vessel diameters was compared to the frequency of DCI-related cerebral infarction before hospital discharge and functional outcome reported as the modified Rankin Scale (mRS) score after 6 months. Results: Between 2014 and 2021, 132 intra-arterial interventions (144 vascular territories, 12 bilaterally) in 30 patients were analyzed for this study. The vasodilating effect of nimodipine was superior to milrinone in all intradural segments. There was no significant intergroup difference concerning outcome in mRS (p = 0.217). Only nimodipine or the combined approach could prevent DCI-related infarction (both 57.1%), not milrinone alone (87.5%). Both drugs induced a doubled vasopressor demand due to blood pressure decrease, but milrinone alone induced tachycardia. Conclusions: The monotherapy with intra-arterial nimodipine was superior to milrinone. Nimodipine and milrinone may be used complementary in an escalation scheme with the administration of nimodipine first, complemented by milrinone in cases of severe CVS. Milrinone monotherapy is not recommended

    ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING.

    Get PDF
    A coding variant of the inflammatory bowel disease (IBD) risk gene ATG16L1 has been associated with defective autophagy and deregulation of endoplasmic reticulum (ER) function. IL-22 is a barrier protective cytokine by inducing regeneration and antimicrobial responses in the intestinal mucosa. We show that ATG16L1 critically orchestrates IL-22 signaling in the intestinal epithelium. IL-22 stimulation physiologically leads to transient ER stress and subsequent activation of STING-dependent type I interferon (IFN-I) signaling, which is augmented in Atg16l1 ΔIEC intestinal organoids. IFN-I signals amplify epithelial TNF production downstream of IL-22 and contribute to necroptotic cell death. In vivo, IL-22 treatment in Atg16l1 ΔIEC and Atg16l1 ΔIEC/Xbp1 ΔIEC mice potentiates endogenous ileal inflammation and causes widespread necroptotic epithelial cell death. Therapeutic blockade of IFN-I signaling ameliorates IL-22-induced ileal inflammation in Atg16l1 ΔIEC mice. Our data demonstrate an unexpected role of ATG16L1 in coordinating the outcome of IL-22 signaling in the intestinal epithelium

    Epithelial IL-23R Signaling Licenses Protective IL-22 Responses in Intestinal Inflammation.

    Get PDF
    A plethora of functional and genetic studies have suggested a key role for the IL-23 pathway in chronic intestinal inflammation. Currently, pathogenic actions of IL-23 have been ascribed to specific effects on immune cells. Herein, we unveil a protective role of IL-23R signaling. Mice deficient in IL-23R expression in intestinal epithelial cells (Il23R(ΔIEC)) have reduced Reg3b expression, show a disturbed colonic microflora with an expansion of flagellated bacteria, and succumb to DSS colitis. Surprisingly, Il23R(ΔIEC) mice show impaired mucosal IL-22 induction in response to IL-23. αThy-1 treatment significantly deteriorates colitis in Il23R(ΔIEC) animals, which can be rescued by IL-22 application. Importantly, exogenous Reg3b administration rescues DSS-treated Il23R(ΔIEC) mice by recruiting neutrophils as IL-22-producing cells, thereby restoring mucosal IL-22 levels. The study identifies a critical barrier-protective immune pathway that originates from, and is orchestrated by, IL-23R signaling in intestinal epithelial cells.This work was supported by DFG Excellence Cluster Inflammation at Interfaces; the SFB877 B9, the SFB 1182 C2 project, and the BMBF IHEC DEEP project TP2.3 and 5.2 (to P.R.); the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007- 2013)/ERC grant agreement 260961 (to A.K.); the National Institute for Health Research Cambridge Biomedical Research Centre, ERC CoG GA 648889, and WTIA 106260-Z-14-Z (to A.K.); NIH DK53056, DK44319, and DK088199 (to R.S.B.); and the Fondation pour la Recherche Medicale (to M.C.).This is the final version of the article. It first appeared from Cell/Elsevier via http://dx.doi.org/10.1016/j.celrep.2016.07.05

    Implementing FAIR through a distributed data infrastructure

    Get PDF
    Within the research project LOD-GOESS (https://lod-geoss.gitub.io ) we are developing a distributed data architecture for sharing and improved discovery of research data in the domain of energy systems analysis. A central element is the databus (https://databus.dbpedia.org ) which acts as a central searchable metadata catalog. Research data can be registered to the databus. The metadata improves the findability of the data, direct links to the data sources accessibility. If the metadata is annotated with an ontology (e.g. the open energy ontology), semantic searches can be performed to find suitable research data. This improves interoperability and reusability of the data. Currently we are developing several demonstrators which show the benefit of open and transparent data handling for the publication of scenario data, model coupling and shared technology data bases. The infrastructure can also be used to track the provenance of data which is used in energy systems analysis. With our presentation we want to show how this infrastructure can be used to improve transparency and traceability of the analysis of future energy systems

    Bilayer-spanning DNA nanopores with voltage-switching between open and closed state.

    Get PDF
    Membrane-spanning nanopores from folded DNA are a recent example of biomimetic man-made nanostructures that can open up applications in biosensing, drug delivery, and nanofluidics. In this report, we generate a DNA nanopore based on the archetypal six-helix-bundle architecture and systematically characterize it via single-channel current recordings to address several fundamental scientific questions in this emerging field. We establish that the DNA pores exhibit two voltage-dependent conductance states. Low transmembrane voltages favor a stable high-conductance level, which corresponds to an unobstructed DNA pore. The expected inner width of the open channel is confirmed by measuring the conductance change as a function of poly(ethylene glycol) (PEG) size, whereby smaller PEGs are assumed to enter the pore. PEG sizing also clarifies that the main ion-conducting path runs through the membrane-spanning channel lumen as opposed to any proposed gap between the outer pore wall and the lipid bilayer. At higher voltages, the channel shows a main low-conductance state probably caused by electric-field-induced changes of the DNA pore in its conformation or orientation. This voltage-dependent switching between the open and closed states is observed with planar lipid bilayers as well as bilayers mounted on glass nanopipettes. These findings settle a discrepancy between two previously published conductances. By systematically exploring a large space of parameters and answering key questions, our report supports the development of DNA nanopores for nanobiotechnology.The SH lab is supported by the Leverhulme Trust (RPG-170), UCL Chemistry, EPSRC (Institutional Sponsorship Award), the National Physical Laboratory, and Oxford Nanopore Technologies. KG acknowledges funding from the Winton Program of Physics for Sustainability, Gates Cambridge and the Oppenheimer Trust. UFK was supported by an ERC starting grant #261101.This is the final version of the article. It was first published by ACS under the ACS AuthorChoice license at http://dx.doi.org/10.1021/nn5039433 This permits copying and redistribution of the article or any adaptations for non-commercial purposes

    Analysis in the Prospective Lynch Syndrome Database identifies sarcoma as part of the Lynch syndrome tumor spectrum

    Get PDF
    Non peer reviewe

    Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome.

    Get PDF
    BACKGROUND: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore