362 research outputs found

    The sub-millimetre evolution of V4334 Sgr (Sakurai's Object)

    Full text link
    We report the results of monitoring of V4334 Sgr (Sakurai's Object) at 450 microns and 850 microns with SCUBA on the James Clerk Maxwell Telescope. The flux density at both wavelengths has increased dramatically since 2001, and is consistent with continued cooling of the dust shell in which Sakurai's Object is still enshrouded, and which still dominates the near-infrared emission. Assuming that the dust shell is optically thin at sub-millimetre wavelengths and optically thick in the near-infrared, the sub-millimetre data imply a mass-loss rate during 2003 of ~3.4(+/0.2)E-5 for a gas-to-dust ratio of 75. This is consistent with the evidence from 1-5micron observations that the mass-loss is steadily increasing.Comment: 5 pages, 4 eps figures, accepted for publication in MNRA

    The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities. Issues in Ecology

    Get PDF
    Landscape connectivity, the extent to which a landscape facilitates the movements of organisms and their genes, faces critical threats from both fragmentation and habitat loss. Many conservation efforts focus on protecting and enhancing connectivity to offset the impacts of habitat loss and fragmentation on biodiversity conservation, and to increase the resilience of reserve networks to potential threats associated with climate change. Loss of connectivity can reduce the size and quality of available habitat, impede and disrupt movement (including dispersal) to new habitats, and affect seasonal migration patterns. These changes can lead, in turn, to detrimental effects for populations and species, including decreased carrying capacity, population declines, loss of genetic variation, and ultimately species extinction. Measuring and mapping connectivity is facilitated by a growing number of quantitative approaches that can integrate large amounts of information about organisms’ life histories, habitat quality, and other features essential to evaluating connectivity for a given population or species. However, identifying effective approaches for maintaining and restoring connectivity poses several challenges, and our understanding of how connectivity should be designed to mitigate the impacts of climate change is, as yet, in its infancy. Scientists and managers must confront and overcome several challenges inherent in evaluating and planning for connectivity, including: •characterizing the biology of focal species; •understanding the strengths and the limitations of the models used to evaluate connectivity; •considering spatial and temporal extent in connectivity planning; •using caution in extrapolating results outside of observed conditions; •considering non-linear relationships that can complicate assumed or expected ecological responses; •accounting and planning for anthropogenic change in the landscape; •using well-defined goals and objectives to drive the selection of methods used for evaluating and planning for connectivity; •and communicating to the general public in clear and meaningful language the importance of connectivity to improve awareness and strengthen policies for ensuring conservation. Several aspects of connectivity science deserve additional attention in order to improve the effectiveness of design and implementation. Research on species persistence, behavioral ecology, and community structure is needed to reduce the uncertainty associated with connectivity models. Evaluating and testing connectivity responses to climate change will be critical to achieving conservation goals in the face of the rapid changes that will confront many communities and ecosystems. All of these potential areas of advancement will fall short of conservation goals if we do not effectively incorporate human activities into connectivity planning. While this Issue identifies substantial uncertainties in mapping connectivity and evaluating resilience to climate change, it is also clear that integrating human and natural landscape conservation planning to enhance habitat connectivity is essential for biodiversity conservation

    The very bright SCUBA galaxy count: looking for SCUBA galaxies with the Mexican Hat Wavelet

    Full text link
    We present the results of a search for bright high-redshift galaxies in two large SCUBA scan-maps of Galactic regions. A Mexican Hat Wavelet technique was used to locate point sources in these maps, which suffer high foreground contamination as well as typical scan-map noise signatures. A catalogue of point source objects was selected and observed again in the submillimetre continuum, and in HCO+ (3->2) at zero redshift to rule out Galactic sources. No extragalactic sources were found. Simulations show that the survey was sensitive to sources with fluxes > 50 mJy, depending on the local background. These simulations result in upper limits on the 850-micron counts of SCUBA galaxies of 53 per square degree at 50 mJy and 2.9 per square degree at 100 mJy.Comment: Accepted by MNRA

    Effects of Contact Network Models on Stochastic Epidemic Simulations

    Full text link
    The importance of modeling the spread of epidemics through a population has led to the development of mathematical models for infectious disease propagation. A number of empirical studies have collected and analyzed data on contacts between individuals using a variety of sensors. Typically one uses such data to fit a probabilistic model of network contacts over which a disease may propagate. In this paper, we investigate the effects of different contact network models with varying levels of complexity on the outcomes of simulated epidemics using a stochastic Susceptible-Infectious-Recovered (SIR) model. We evaluate these network models on six datasets of contacts between people in a variety of settings. Our results demonstrate that the choice of network model can have a significant effect on how closely the outcomes of an epidemic simulation on a simulated network match the outcomes on the actual network constructed from the sensor data. In particular, preserving degrees of nodes appears to be much more important than preserving cluster structure for accurate epidemic simulations.Comment: To appear at International Conference on Social Informatics (SocInfo) 201

    A Submillimeter Study of the Star-Forming Region NGC7129

    Get PDF
    New molecular (13CO J=3-2) and dust continuum (450 and 850 micron) SCUBA maps of the NGC7129 star forming region are presented, complemented by C18O J=3-2 spectra at several positions within the mapped region. The maps include the Herbig Ae/Be star LkHalpha 234, the far-infrared source NGC 7129 FIRS2 and several other pre-stellar sources embedded within the molecular ridge. The SCUBA maps help us understand the nature of the pre-main sequence stars in this actively star forming region. A deeply embedded submillimeter source, SMM2, not clearly seen in any earlier data set, is shown to be a pre-stellar core or possibly a protostar. The highest continuum peak emission is identified with the deeply embedded source IRS6, a few arcseconds away from LkHalpha 234, and also responsible for both the optical jet and the molecular outflow. The gas and dust masses are found to be consistent, suggesting little or no CO depletion onto grains. The dust emissivity index is lower towards the dense compact sources, beta ~1 - 1.6, and higher, beta ~ 2.0, in the surrounding cloud, implying small size grains in the PDR ridge, whose mantles have been evaporated by the intense UV radiation.Comment: Accepted by Ap

    S-bearing molecules in Massive Dense Cores

    Get PDF
    Chemical composition of the massive cores forming high-mass stars can put some constrains on the time scale of the massive star formation: sulphur chemistry is of specific interest due to its rapid evolution in warm gas and because the abundance of sulphur bearing species increases significantly with the temperature. Two mid-infrared quiet and two brighter massive cores are observed in various transitions (E_up up to 289K) of CS, OCS, H2S, SO, SO2 and of their isotopologues at mm wavelengths with the IRAM 30m and CSO telescopes. 1D modeling of the dust continuum is used to derive the density and temperature laws, which are then applied in the RATRAN code to model the observed line emission, and to derive the relative abundances of the molecules. All lines, except the highest energy SO2 transition, are detected. Infall (up to 2.9km/s) may be detected towards the core W43MM1. The inferred mass rate is 5.8-9.4 10^{-2} M_{\odot}/yr. We propose an evolutionary sequence of our sources (W43MM1-IRAS18264-1152-IRAS05358+3543-IRAS18162-2048), based on the SED analysis. The analysis of the variations in abundance ratios from source to source reveals that the SO and SO2 relative abundances increase with time, while CS and OCS decrease. Molecular ratios, such as [OCS/H2S], [CS/H2S], [SO/OCS], [SO2/OCS], [CS/SO] and [SO2/SO] may be good indicators of evolution depending on layers probed by the observed molecular transitions. Observations of molecular emission from warmer layers, hence involving higher upper energy levels are mandatory to include.Comment: 24 pages, accepted for publicatio

    The Modelling of InfraRed Dark Clouds

    Full text link
    This paper presents results from modelling 450 micron and 850 micron continuum and HCO+ line observations of three distinct cores of an infrared dark cloud (IRDC) directed toward the W51 GMC. In the sub-mm continuum these cores appear as bright, isolated emission features. One of them coincides with the peak of 8.3 micron extinction as measured by the Midcourse Space Experiment satellite. Detailed radiative transfer codes are applied to constrain the cores' physical conditions to address the key question: Do these IRDC-cores harbour luminous sources? The results of the continuum model, expressed in the χ2\chi^2 quality-of-fit parameter, are also constrained by the absence of 100 micron emission from IRAS. For the sub-mm emission peaks this shows that sources of 300 solar luminosities are embedded within the cores. For the extinction peak, the combination of continuum and HCO+ line modelling indicates that a heating source is present as well. Furthermore, the line model provides constraints on the clumpiness of the medium. All three cores have similar masses of about 70-150 solar masses and similar density structures. The extinction peak differs from the other two cores by hosting a much weaker heating source, and the sub-mm emission core at the edge of the IRDC deviates from the other cores by a higher internal clumpiness.Comment: 13 pages, 13 figures, accepted for publication in A&

    A Multi-wavelength Study of the Massive Star-forming Region S87

    Full text link
    This article presents a multi-wavelength study towards S87, based on a dataset of submillimeter/far-/mid-infrared (sub-mm/FIR/MIR) images and molecular line maps. The sub-mm continuum emission measured with JCMT/SCUBA reveals three individual clumps, namely, SMM1, SMM2, and SMM3. The MIR/FIR images obtained by the Spitzer Space Telescope indicate that both SMM1 and SMM3 harbor point sources. The J=1-0 transitions of CO, 13CO, C18O, and HCO+, measured with the 13.7m telescope of the Purple Mountain Observatory, exhibit asymmetric line profiles. Our analysis of spectral energy distributions (SEDs) shows that all of the three sub-mm clumps are massive (110--210 MM_{\odot}), with average dust temperatures in the range ~20--40K. A multi-wavelength comparison convinces us that the asymmetric profiles of molecular lines should result from two clouds at slightly different velocities, and it further confirms that the star-forming activity in SMM1 is stimulated by a cloud-cloud collision. The stellar contents and SEDs suggest that SMM1 and SMM3 are high-mass and intermediate-mass star-forming sites respectively. However, SMM2 has no counterpart downwards 70 micron, which is likely to be a cold high-mass starless core. These results, as mentioned above, expose multiple phases of star formation in S87.Comment: 29 pages, 7 figures, Accepted for publication in the Astrophysical Journa

    The structure of molecular gas associated with NGC2264: wide-field 12CO and H2 imaging

    Full text link
    We present wide-field, high-resolution imaging observations in 12CO 3-2 and H2 1-0 S(1) towards a ~1 square degree region of NGC2264. We identify 46 H2 emission objects, of which 35 are new discoveries. We characterize several cores as protostellar, reducing the previously observed ratio of prestellar/protostellar cores in the NGC2264 clusters. The length of H2 jets increases the previously reported spatial extent of the clusters. In each cluster, <0.5% of cloud material has been perturbed by outflow activity. A principal component analysis of the 12CO data suggests that turbulence is driven on scales >2.6 pc, which is larger than the extent of the outflows. We obtain an exponent alpha=0.74 for the size-linewidth relation, possibly due to the high surface density of NGC2264. In this very active, mixed-mass star forming region, our observations suggest that protostellar outflow activity is not injecting energy and momentum on a large enough scale to be the dominant source of turbulence.Comment: MNRAS accepte

    HARP/ACSIS: A submillimetre spectral imaging system on the James Clerk Maxwell Telescope

    Full text link
    This paper describes a new Heterodyne Array Receiver Programme (HARP) and Auto-Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope (JCMT). The 16-element focal-plane array receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three-dimensional) mapping speeds, along with significant improvements over single-detector counterparts in calibration and image quality. Receiver temperatures are \sim120 K across the whole band and system temperatures of \sim300K are reached routinely under good weather conditions. The system includes a single-sideband filter so these are SSB figures. Used in conjunction with ACSIS, the system can produce large-scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully-sampled maps of size 1 square degree can be observed in under 1 hour. The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large-scale unbiased surveys of galactic and extra-galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three-dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARP/ACSIS will provide highly complementary science programmes to wide-field continuum studies, and produce the essential preparatory work for submillimetre interferometers such as the SMA and ALMA.Comment: MNRAS Accepted 2009 July 2. 18 pages, 25 figures and 6 table
    corecore