205 research outputs found

    Upper Mantle Pollution during Afar Plume-Continental Rift Interaction

    Get PDF
    International audienceNew Pb, Sr, Nd, Hf, and He isotope data for Quaternary basalts, erupted from Debre Zeyit, Butajira, and the Wonji Fault Belt of the Main Ethiopian Rift, show systematic mixing relationships involving three distinct mantle sources. The Pb, Sr, Nd, and Hf isotopic arrays converge in a specific region of isotopic multi-space where they define the composition of the Afar mantle plume (centered about (206)Pb/(204)Pb = 19 center dot 5, (87)Sr/(86)Sr = 0 center dot 7035, epsilon(Nd) = +4 center dot 6, epsilon(Hf) = +9 center dot 3, (3)He/(4)He > 15 R(A)). This plume end-member has an identical composition to that observed previously in oceanic basalts. The distinct isotopic arrays for the various volcanic areas in the Main Ethiopian Rift vary spatially in a systematic manner, and may be viewed as pseudo-binary mixing arrays. This further suggests that the Afar mantle plume interacts with the local continental lithosphere and upper mantle asthenosphere (mid-ocean ridge basalt-like source) through an ordered sequence of mixing events. Simple mixing models require that the mass proportions of continental lithosphere and upper mantle involved in magma generation must be nearly constant within each volcanic area, but that the proportion of plume material decreases regularly with distance southwestward along the Main Ethiopian Rift, away from the central axis of the plume. This systematic behavior means that continental lithosphere can become detached and mixed into the shallow mantle prior to the flow of upwelling plume material beneath the developing rift system. Detachment and mixing into the asthenosphere during continental rift evolution is an important process for producing the range of ambient upper mantle compositions sampled by mid-ocean ridge volcanism away from island hotspots

    The Human Pregnancy-Specific Glycoprotein Genes are Tightly Linked on the Long Arm of Chromosome 19 and are Coordinately Expressed

    Get PDF
    The pregnancy-specific glycoprotein (PSG) genes encode a group of proteins which are found in large amounts in placenta and maternal serum. In situ hybridization analyses of metaphase chromosomes reveal that all the human pregnancy-specific glycoprotein (PSG) genes are located on the long arm of chromosome 19 (19q13.2–13.3), overlapping the region containing the closely-related carcinoembryonic antigen (CEA) gene subgroup. Higher resolution analyses indicate that the PSG genes are closely linked within an 800kb SacII restriction endonuclease fragment. This has been confirmed through restriction endonuclease mapping and DNA sequence analyses of isolated genomic clones, which show that at least some of these genes are located in very close proximity. Further, these studies have helped to identify a new member of the PSG gene sub-family (PSG7). DNA/RNA hybridization analyses, using gene-specific oligonucleotide probes based on published sequences, showed that five from six PSG genes tested are coordinately transcribed in the placenta. Due to the close proximity of these genes and their coordinated expression pattern, common transcriptional regulatory elements may exist

    Adherence to Accelerometer Protocols Among Women From Economically Disadvantaged Neighborhoods

    Get PDF
    Background: Objective measurement of physical activity with accelerometers is a challenging task in community-based intervention research. Challenges include distribution of and orientation to monitors, nonwear, incorrect placement, and loss of equipment. Data collection among participants from disadvantaged populations may be further hindered by factors such as transportation challenges, competing responsibilities, and cultural considerations. Methods: Research staff distributed accelerometers and provided an orientation that was tailored to the population group. General adherence strategies such as follow-up calls, daily diaries, verbal and written instructions, and incentives were accompanied by population-specific strategies such as assisting with transportation, reducing obstacles to wearing the accelerometer, tailoring the message to the participant population, and creating a nonjudgmental environment. Results: Sixty women asked to wear the Actigraph GT1M returned the accelerometer, and 57 of them provided sufficient data for analysis (at least 10 hours a day for a minimum of 4 days) resulting in 95% adherence to the protocol. Participants wore the accelerometers for an average of 5.98 days and 13.15 hours per day. Conclusions: The high accelerometer monitoring adherence among this group of economically disadvantaged women demonstrates that collection of high-quality, objective physical data from disadvantaged populations in field-based research is possible

    Carcinoembryonic Antigen Gene Family

    Get PDF
    The carcinoembryonic antigen (CEA) gene family belongs to the immunoglobulin supergene family and can be divided into two main subgroups based on sequence comparisons. In humans it is clustered on the long arm of chromosome 19 and consists of approximately 20 genes. The CEA subgroup genes code for CEA and its classical crossreacting antigens, which are mainly membrane-bound, whereas the other subgroup genes encode the pregnancy-specific glycoproteins (PSG), which are secreted. Splice variants of individual genes and differential post-translational modifications of the resulting proteins, e.g., by glycosylation, indicate a high complexity in the number of putative CEA-related molecules. So far, only a limited number of CEA-related antigens in humans have been unequivocally assigned to a specific gene. Rodent CEA-related genes reveal a high sequence divergence and, in part, a completely different domain organization than the human CEA gene family, making it difficult to determine individual gene counterparts. However, rodent CEA-related genes can be assigned to human subgroups based on similarity of expression patterns, which is characteristic for the subgroups. Various functions have been determined for members of the CEA subgroup in vitro, including cell adhesion, bacterial binding, an accessory role for collagen binding or ecto-ATPases activity. Based on all that is known so far on its biology, the clinical outlook for the CEA family has been reassessed
    corecore