614 research outputs found

    Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings.

    Get PDF
    Microscopic understanding of physical and electrochemical processes at electrolyte/electrode interfaces is critical for applications ranging from batteries, fuel cells to electrocatalysis. However, probing such buried interfacial processes is experimentally challenging. Infrared spectroscopy is sensitive to molecule vibrational signatures, yet to approach the interface three stringent requirements have to be met: interface specificity, sub-monolayer molecular detection sensitivity, and electrochemically stable and infrared transparent electrodes. Here we show that transparent graphene gratings electrode provide an attractive platform for vibrational spectroscopy at the electrolyte/electrode interfaces: infrared diffraction from graphene gratings offers enhanced detection sensitivity and interface specificity. We demonstrate the vibrational spectroscopy of methylene group of adsorbed sub-monolayer cetrimonium bromide molecules and reveal a reversible field-induced electrochemical deposition of cetrimonium bromide on the electrode controlled by the bias voltage. Such vibrational spectroscopy with graphene gratings is promising for real time and in situ monitoring of different chemical species at the electrolyte/electrode interfaces

    Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy

    Get PDF
    This study examined the microbial diversity and community assembly of oral microbiota in periodontal health and disease and after nonsurgical periodontal treatment. The V4 region of 16S rRNA gene from DNA of 238 saliva and subgingival samples of 21 healthy and 48 diseased subjects was amplified and sequenced. Among 1979 OTUs identified, 28 were overabundant in diseased plaque. Six of these taxa were also overabundant in diseased saliva. Twelve OTUs were overabundant in healthy plaque. There was a trend for disease-associated taxa to decrease and health-associated taxa to increase after treatment with notable variations among individual sites. Network analysis revealed modularity of the microbial communities and identified several health- and disease-specific modules. Ecological drift was a major factor that governed community turnovers in both plaque and saliva. Dispersal limitation and homogeneous selection affected the community assembly in plaque, with the additional contribution of homogenizing dispersal for plaque within individuals. Homogeneous selection and dispersal limitation played important roles, respectively, in healthy saliva and diseased pre-treatment saliva between individuals. Our results revealed distinctions in both taxa and assembly processes of oral microbiota between periodontal health and disease. Furthermore, the community assembly analysis has identified potentially effective approaches for managing periodontitis

    Topological Susceptibility under Gradient Flow

    Get PDF
    We study the impact of the Gradient Flow on the topology in various models of lattice field theory. The topological susceptibility χt\chi_{\rm t} is measured directly, and by the slab method, which is based on the topological content of sub-volumes ("slabs") and estimates χt\chi_{\rm t} even when the system remains trapped in a fixed topological sector. The results obtained by both methods are essentially consistent, but the impact of the Gradient Flow on the characteristic quantity of the slab method seems to be different in 2-flavour QCD and in the 2d O(3) model. In the latter model, we further address the question whether or not the Gradient Flow leads to a finite continuum limit of the topological susceptibility (rescaled by the correlation length squared, ξ2\xi^{2}). This ongoing study is based on direct measurements of χt\chi_{\rm t} in L×LL \times L lattices, at L/ξ6L/\xi \simeq 6.Comment: 8 pages, LaTex, 5 figures, talk presented at the 35th International Symposium on Lattice Field Theory, June 18-24, 2017, Granada, Spai

    Peripheral arterial occlusive disease: Global gene expression analyses suggest a major role for immune and inflammatory responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peripheral arterial disease (PAD), a major manifestation of atherosclerosis, is associated with significant cardiovascular morbidity, limb loss and death. However, mechanisms underlying the genesis and progression of the disease are far from clear. Genome-wide gene expression profiling of clinical samples may represent an effective approach to gain relevant information.</p> <p>Results</p> <p>After histological classification, a total of 30 femoral artery samples, including 11 intermediate lesions, 14 advanced lesions and 5 normal femoral arteries, were profiled using Affymetrix microarray platform. Following real-time RT-PCR validation, different algorithms of gene selection and clustering were applied to identify differentially expressed genes. Under a stringent cutoff, i.e., a false discovery rate (FDR) <0.5%, we found 366 genes were differentially regulated in intermediate lesions and 447 in advanced lesions. Of these, 116 genes were overlapped between intermediate and advanced lesions, including 68 up-regulated genes and 48 down-regulated ones. In these differentially regulated genes, immune/inflammatory genes were significantly up-regulated in different stages of PAD, (85/230 in intermediate lesions, 37/172 in advanced lesions). Through literature mining and pathway analysis using different databases such as Gene Ontology (GO), and the Kyoto Encyclopedia of Gene and Genomics (KEGG), genes involved in immune/inflammatory responses were significantly enriched in up-regulated genes at different stages of PAD(p < 0.05), revealing a significant correlation between immune/inflammatory responses and disease progression. Moreover, immune-related pathways such as Toll-like receptor signaling and natural killer cell mediated cytotoxicity were particularly enriched in intermediate and advanced lesions (P < 0.05), highlighting their pathogenic significance during disease progression.</p> <p>Conclusion</p> <p>Lines of evidence revealed in this study not only support previous hypotheses, primarily based on studies of animal models and other types of arterial disease, that inflammatory responses may influence the development of PAD, but also permit the recognition of a wide spectrum of immune/inflammatory genes that can serve as signatures for disease progression in PAD. Further studies of these signature molecules may eventually allow us to develop more sophisticated protocols for pharmaceutical interventions.</p

    Purine synthesis promotes maintenance of brain tumor initiating cells in glioma

    Get PDF
    Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy

    Ipomoeassin F Binds Sec61α to Inhibit Protein Translocation

    Get PDF
    Funding Information: We thank the Arkansas Nano & Bio Materials Characterization Facility at the Institute for Nano Sciences & Engineering for our imaging studies, and Prof Yoshito Kishi (Harvard University) for the kind gift of synthetic mycolactone A/B used by S.H. and R.S. W.S. is supported by Grant No. R15GM116032 from the National Institute of General Medical Sciences of the National Institutes of Health (NIH) and startup funds from the University of Arkansas. This work was also supported in part by Grant No. P30 GM103450 from the National Institute of General Medical Sciences of the NIH and by seed money from the Arkansas Biosciences Institute (ABI). S.O’K. is the recipient of a Biotechnology and Biological Sciences Research Council (BBSRC) Doctoral Training Programme Award (BB/J014478/ 1), and S.H. holds a Welcome Trust Investigator Award in Science (204957/Z/16/Z). The alpha-1 antitrypsin work was supported by the Alpha-1 Foundation (J.I. and M.J.I.). J.I. and M.J.H. were supported by the intramural program of NCATS, National Institutes of Health, projects 1ZIATR000048-03 (J.I.) and ZIATR000063-04 (M.J.H.). R.S. holds a Welcome Trust Investigator Award in Science (202843/Z/16/Z). C.D. received funding from the Institut Pasteur, the Institut National de la Santé et de la Recherche Med́ icale, and the Fondation Raoul Follereau. N.B.’s synthesis and chemical biology studies of mycolactone were supported by CNRS, Université de Strasbourg, Fondations Potier et Follereau, and the Investisse-ment d’Avenir (Idex Unistra). V.O.P. is supported by the Academy of Finland (Grants 289737 and 314672) and the Sigrid Juselius Foundation. Funding Information: We thank the Arkansas Nano & Bio Materials Characterization Facility at the Institute for Nano Sciences & Engineering for our imaging studies, and Prof Yoshito Kishi (Harvard University) for the kind gift of synthetic mycolactone A/B used by S.H. and R.S. W.S. is supported by Grant No. R15GM116032 from the National Institute of General Medical Sciences of the National Institutes of Health (NIH) and startup funds from the University of Arkansas. This work was also supported in part by Grant No. P30 GM103450 from the National Institute of General Medical Sciences of the NIH and by seed money from the Arkansas Biosciences Institute (ABI). S.O'K. is the recipient of a Biotechnology and Biological Sciences Research Council (BBSRC) Doctoral Training Programme Award (BB/J014478/1), and S.H. holds a Welcome Trust Investigator Award in Science (204957/Z/16/Z). The alpha-1 antitrypsin work was supported by the Alpha-1 Foundation (J.I. and M.J.I.). J.I. and M.J.H. were supported by the intramural program of NCATS, National Institutes of Health, projects 1ZIATR000048-03 (J.I.) and ZIATR000063-04 (M.J.H.). R.S. holds a Welcome Trust Investigator Award in Science (202843/Z/16/Z). C.D. received funding from the Institut Pasteur, the Institut National de la Sante et de la Recherche Medicale, and the Fondation Raoul Follereau. N.B.'s synthesis and chemical biology studies of mycolactone were supported by CNRS, Universite de Strasbourg, Fondations Potier et Follereau and the Investissement d'Avenir (Idex Unistra). V.O.P. is supported by the Academy of Finland (Grants 289737 and 314672) and the Sigrid Juselius Foundation. Publisher Copyright: © 2019 American Chemical Society.Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61 alpha (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61 alpha from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61 alpha forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61 alpha provides compelling evidence that Sec61 alpha is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61 alpha is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61 alpha function and to further investigate its potential as a therapeutic target for drug discovery.Peer reviewe

    Investigation of nonlinear difference-frequency wave excitation on a semisubmersible offshore-wind platform with bichromatic-wave CFD simulations

    Get PDF
    The natural surge and pitch frequencies of semisubmersible offshore wind platforms are typically designed to be below the wave frequencies to avoid direct excitation. However, surge or pitch resonance can be excited by the nonlinear low-frequency loads generated by irregular incident waves. Second-order potential-flow models with added Morison drag have been found to underpredict this low-frequency excitation and response. As part of the OC6 project1 , the authors performed computational fluid dynamics (CFD) simulations to enable a better understanding of the low-frequency loads and the limitations of lower-fidelity models. The focus of this paper is to set up a computationally cost-effective CFD simulation of a fixed semisubmersible platform to investigate nonlinear differencefrequency loads and establish the corresponding uncertainty in the results. Because of the high computing cost, CFD simulations of irregular waves can be challenging. Instead, simulations were performed with bichromatic waves having a shorter repeat period. A preliminary comparison with quadratic transfer functions from second-order potential-flow theory shows that CFD models consistently predict higher nonlinear wave loads at the difference frequency, likely because of flow separation and viscous drag not accounted for in potential-flow theor

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore