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Abstract. We study the impact of the Gradient Flow on the topology in various models
of lattice field theory. The topological susceptibility y, is measured directly, and by the
slab method, which is based on the topological content of sub-volumes (“slabs”) and
estimates y, even when the system remains trapped in a fixed topological sector. The
results obtained by both methods are essentially consistent, but the impact of the Gradient
Flow on the characteristic quantity of the slab method seems to be different in 2-flavour
QCD and in the 2d O(3) model. In the latter model, we further address the question
whether or not the Gradient Flow leads to a finite continuum limit of the topological
susceptibility (rescaled by the correlation length squared, £2). This ongoing study is
based on direct measurements of y, in L X L lattices, at L/& =~ 6.

1 Introduction

In some quantum field theories, the set of configurations is divided into topological sectors, labelled
by a topological charge Q € Z. This is the case in QCD, and in N-dimensional O(N + 1) models (with
periodic boundary conditions for the gluon and spin fields), due to IT4[SU(3)] = Z and IIy[S"] = Z.
Hence this class of models includes 2-flavour QCD, as well as the 1d O(2) and the 2d O(3) model,
which we are going to deal with.

For usual lattice actions, all configurations can be continuously deformed into one another, at
finite action, hence there are no topological sectors in a strict sense. Exceptions are topological
lattice actions, with a sharp cutoff for the angles between nearest neighbour spin variables [1], or for
each plaquette variable [2, 3], in spin models and gauge theories, respectively. However, even for
conventional lattice actions there are established ways to divide the configurations into sectors, which
turn into topological sectors in the continuum limit.
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Here we consider 2-flavour QCD with twisted-mass quarks [4] (at full twist) and the Wilson gauge
action. For the O(N) models we employ the standard lattice action,

S[é’]:ﬂZ(l—é’x-é’y), é'xESN_1 Yx, N=2o0r3, (D)
(xy)

where the sum runs over all nearest neighbour lattice sites. For these O(N) models we apply the
geometric definition of the topological charge density on the lattice [5], which leads to integer charges
0 € Z. In QCD we use a clover discretisation of F, WF > Where F is the field strength tensor.

In all cases under consideration, parity symmetry implies (Q) = 0, hence the topological suscep-

tibility takes the form

1
Xt = ‘—/(Q2>, QO : topological charge, V : volume. 2

2 The slab method to measure the topological susceptibility y,

Once we have fixed a formulation of the topological charge on the lattice, it is straightforward to
measure y; by means of Monte Carlo simulations, if the Markov chain frequently changes Q, such
that the sectors are sampled correctly. In practice, however, such simulations are often confronted
with the severe problem of “topological freezing”: in particular, the algorithms, which proceed in
small update steps, tend to get stuck in one topological sector for a huge number of steps, since the
topological sectors are effectively separated by high potential barriers. The autocorrelation time with
respect to Q increases with a high power of the inverse lattice spacing as we approach the continuum
limit (“topological slowing down”), see e.g. Ref. [6].

A variety of approaches to handle this problem is reviewed in Ref. [7]. One strategy aims at ex-
tracting physical observables even from a Markov chain which is entirely trapped in a single topolog-
ical sector. For general observables such a method was suggested in Ref. [8], and tested and extended
in Refs. [9—12]. More specifically, a procedure to measure y; within a fixed topological sector was
proposed in Ref. [13] and tested in Refs. [9, 12, 14, 15]. Here we consider the slab method as another
way to evaluate y; from data obtained at fixed Q (actually data from +Q can be combined). The idea
was mentioned in Ref. [16], implemented in Ref. [17], and further explored in Refs. [12, 18, 19]. A
different variant was applied in Ref. [20], and there are similarities with the approach in Ref. [21].

We briefly review the simplest version of the slab method, which assumes the statistical distribu-
tion of the topological charges to be Gaussian [17], p(Q) o exp(—Q2 /(2x¢V)). We split the volume
V into two sub-volumes (“slabs”) xV and (1 — x)V (0 < x < 1). By summing up the topological
charge density in each of them, in a configuration of topological charge O, we obtain the slab charges
q, O—q € R (they do not need to be integer, since the slabs do not have periodic boundaries). At fixed
x, V and Q, the corresponding slab probability distributions p; and p, obey

q/2

2x:V x(1 — x)

pl(q)pz(Q—q)oceXp(— ) s 4 =q-x0. (3)
Measuring (g) yields a value for (¢’>) = (¢*) — x>Q*. A sequence of such measurements, at different
parameters x, enables a fit to the prediction

@* =xVx(l -x), 4)

which provides a result for y,. In practice, the most reliable fitting regime is around the center, x = 0.5,
because the size of the slabs should be large compared to that of topological excitations; one should
not include x>0 or x <1 (these regions involve very small slabs, where the Gaussian distribution is
not a good approximation).
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2.1 Results by the slab method under Gradient Flow (GF)

As a smoothing procedure for lattice field configurations, the GF corresponds to a renormalisation
group scheme. When the GF proceeds, the distinction between topological sectors becomes more
marked, approaching the continuum feature of a total separation [22, 23].

The slab method has been tested in 2-flavour QCD, with twisted-mass quarks and the Wilson
gauge action, in a volume 16 x 32, at 8 = 3.9 and bare mass 0.015, which corresponds to a pion mass
of m, ~ 650 MeV and a lattice spacing a =~ 0.079 fm [18, 19].

The GF was implemented with the Runge-Kutta method; the results with time step df = 0.01 and
0.001 agree. The GF flow time unit was fixed to f/a® = 2.42, based on the criterion proposed in Refs.
[22, 23]: (E)ty = 0.3, where (E) is the mean energy density. The effect of the GF on the curves to be
fitted in the slab method is shown in Figure 1 (left). As the GF proceeds, the fit has to be restricted to
a narrower interval centered at x = 0.5. Moreover, the fitting function (4) has to be extended to

@ =xVx(d-x-c, (5)

where c is a constant (with respect to x), which increases roughly like ~ 0.38 Vi [19]. The fits
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Figure 1. On the left: the expectation value (¢’*), as a function of the parameter x = Vy,/V, in 2-flavour QCD,
in the sector |Q] = 1. Combined fits to eq. (5), in the sectors |Q| < 2, at different instances of the GF time, lead
to the results for the topological susceptibility y, in the plot on the right. They agree with a direct measurement,
and with the method of Ref. [13] (AFHO method).

at different instances of the GF time, ¢t = g, 2t;... 81, yield very stable results for y, which are
compatible both with a direct measurement ()\qa4 = 7.8(2) - 107°), and with the method of Ref.
[13] ()(ta4 = 7.7(2) - 107), see Figure 1 (right). In the interval ¢ = 1;...4ty we consistently obtain
ywa* =7.7(2) - 107. This is a success of the slab method, but the rdle of the subtractive constant c is
not obvious.

In the continuum, the Gradient Flow in O(N) models takes the form [24]

N
de(t,x) = ) PIt,x) Ae(t,x) PGt x) = 67— e(t, 0)e(t, x)/ ©)
=1

where # > 0 is the GF time (of dimension [length]?) and A is the Laplace operator, which we handle

by standard lattice discretisation. In order to proceed in discrete flow time steps, we apply the Runge-
Kutta method. For a given configuration we first compute the gradients of all spin variables (at all
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Figure 2. On the left: the quantity (¢’*)(x), in the 2d O(3) model, in the sector |Q| = 1, with and without GF. Fits
to eq. (4), in the sectors |Q| = 0, 1, 2, yield the results for y,, which are shown on the right. They are close to
each other, and to the values from direct measurement (the GF drives them slightly apart).

times required by the Runge-Kutta 4-point scheme), then all spins are modified simultaneously, with
a time step dt = 107*; afterwards the spins are normalised again.

In this manner, we considered L x L lattices, for instance with L = 120, 8 = 1.607, where the
correlation length amounts to & = 19.1(2) [25]. Figure 2 (left) shows the (approximate) slab parabolae
obtained for (¢’?)(x) in the sector |Q| = 1, in even multiples of the flow time unit #y = 0.0772 (which
obeys (E)ty = 0.08, cf. Section 3). We see a qualitative difference from the QCD result in Figure 1:
here the fits do not require any subtractive constant, i.e. the original formula (4) can be used, and y;
keeps on decreasing as the GF proceeds (the curvature of the parabola is reduced). This feature was
also observed in all data sets to be reported in Section 3. The fitting results for y;, — obtained by the
slab method, separately in the sectors |Q| = 0, 1, 2 — are close to the directly measured values, as we
see in Figure 2 (right). In this case, the direct measurement is not problematic, since our simulations
were carried out with the Wolff cluster algorithm, which proceeds in non-local update steps, thus
suppressing the effect of topological freezing [26].

In order to investigate further these qualitatively different behaviours, we tested the 1d O(2) model,
or quantum rotor, as a toy model. Here we refer to 8 = 2, as an example. In infinite volume we can
compute analytically [27] (still for the standard lattice action, in lattice units)

B=2: £=2779, x ~001936, ©)

in agreement with our simulation results for size L = 100 (we used again the cluster algorithm).
Regarding the slab method under GF, Figure 3 shows the results for (q’z)(x) in the sector |Q] = 2
at various flow times ¢, and y; as a function of ¢. For the scaling quantity we obtain numerically
att = 0 : y& = 0.05388(6), and at t = 10 : x& = 0.0496(1); thus we gradually approach the
continuum value of y& = 1/(27%) = 0.05066. Regarding the different features in QCD and in the 2d
O(3) model, the quantum rotor at short flow times (¢ = O(1)) seems compatible with the latter, but at
t = O(10) a non-negligible constant has to be subtracted for a successful fit; at # = 10 it takes values
¢ = 0.08...0.09 in the sectors |Q| < 2.

In the 2d O(3) model our flow times are short so far, cf. Section 3; the question whether the same
behaviour sets in after a long GF is under investigation.
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Figure 3. The slab method in the 1d O(2) model: at short GF times, (¢’*)(x) (on the left) can be fitted to eq. (4),
but long flow times require an extension to eq. (5), and the exclusion of x>0 and x <1 from the fit. After a long
flow time, the sector Q = 0 provides the best results for y,, as the plot on the right shows.

3 Topological scaling in the 2d O(3) model

In a d-dimensional quantum field theory with topological sectors, the dimensionless term y &9 is
supposed to be a scaling quantity, which converges to a finite value in the continuum limit. For the 1d
0O(2) model the continuum value y; ¢ = 1/ (27%) is attained without problems [1, 11, 27]. In QCD, and
in SU(N) Yang-Mills theories (N > 2), a straight approach based on the expression y; = 3 ,.{q0qx),
where ¢, is the lattice topological charge density, faces problems. In conventional formulations one
encounters a divergence due to the point x = 0, which prevents the continuum scaling. In these cases,
there are known solutions to this problem, in particular the application of the GF [22, 23].

In the 2d O(3) model, this question has been controversial in the 1980s and 1990s. The consensus
is now that the quantity y, &> seems to diverge in the continuum limit, as first observed in [5], and later
underpinned by semi-classical studies, e.g. in Refs. [28, 29]. Again the problem can be traced back to
the topological density correlation at distance zero (see e.g. Ref. [1]), and the semi-classical picture
suggests an abundance of very small topological windings, so-called dislocations, as the continuum
limit is approached. Ref. [30] constructed and applied a sophisticated (truncated) classically perfect
lattice action, with a host of couplings beyond nearest neighbour lattice sites, which suppress such
dislocations. Nevertheless, the simulation results with this action still suggest a logarithmic divergence
of the term y, & in the continuum limit (¢ — oo in lattice units). Hence the continuum limit of this
popular model is generally assumed to be ill-defined, at least with respect to its topology (the reason
is again the contribution {goqo), see e.g. Refs. [1, 31, 32]).

However, the question remains whether or not this divergence could be overcome by the GF; we
gave preliminary results in Ref. [25]. In the following we summarise the status of this study. So far it
involves nine Lx L lattices, in the range of L = 24 ...404, where in each volume 3 has been tuned such
that L/& ~ 6. Therefore, increasing L corresponds to a controlled step towards the continuum limit, at
a fixed and large physical box size. The statistics in each volume are 10° configurations (generated by
the Wolff cluster algorithm, both in the single-cluster and the multi-cluster version). We repeat that
we perform the GF with the Runge-Kutta 4-point method, with a time step of d¢ = 107*, which is
simultaneously applied to all spin variables.

Figure 4 (left) shows the early GF time evolution of the product (E)t. At longer flow times it
increases up to some maximum, before monotonically decreasing again. For increasing volume, the
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Figure 4. The 2d O(3) model under GF: on the left, the term (E)z, which fixes a GF time unit #, (in lattice units)
by the condition (E)#, = 0.08. On the right: the correlation function C(r) at t = 0, 4¢,, 8. At fixed distance r
the GF moves it up, but the correlation length £ remains practically constant.

value of the maximum of (E)t decreases, hence the reference value has to be sufficiently small, such
that it is attained in all volumes under consideration. We are in the process of extending this study up
to L = 494 and 606, where for instance 0.1 is not attained anymore. Hence we chose the reference
value 0.08, which works up to L = 606 [33]. So we refer to the definition

(E)to = 0.08, (8)

as we anticipated in Figure 2.

Figure 4 (right) shows an example for the zero-momentum spin-spin correlation function C(r) at
t =0, 41y, 8ty. Atafixed distance r between Euclidean time layers, C(r) increases as the GF proceeds,
but the correlation length ¢ remains unchanged within the errors. We measured & by a fit to a cosh-
function in the range r € [L/3,2L/3]. We see that the GF — up to t = 87y — hardly affects this
long-range property.

Figure 5 (left) illustrates the GF time evolution of the term y&2, which is supposed to be the
scaling quantity. We see a rapid decrease at an early stage of the GF flow, in particular at large L and
&. This observation is compatible with an increasing dominance of small dislocations on fine lattices:
these topological windings are destroyed even by a short GF flow.

Finally, Figure 5 (right) shows x&? as a function of &, at various multiples of the flow time unit
to (the lines are drawn to guide the eye). At this stage, no trend towards a stabilisation is visible. The
observed behaviour at r = 0 is well compatible with a logarithmically divergent function of the form
xi&? = c1In(cré + ¢3); at t = 1. .. 6ty the quality of this fit is somewhat worse, but it still follows
roughly this behaviour (although a power-law ¢1£“ + c3 can be fitted with a similar quality) [25].
In any case, the present data do not provide a basis for revising the standard lore of a topologically
ill-defined continuum limit in this model.

4 Summary and outlook

In Section 2 we have discussed the slab method, which enables a reliable measurement of the
topological susceptibility within a fixed topological sector, i.e. from a Markov chain at fixed Q. This
method does still work quite well when the GF is applied, but in some cases — in particular in QCD
— we observed the necessity to subtract a constant from the expected fitting function.
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Figure 5. Left: the GF time evolution of the term y&? in nine L X L lattices, in each case at L ~ 6¢. In large
volumes we observe a rapid decrease at an early stage of the GF; this can be interpreted as the destruction of
numerous small dislocations. Right: in the range t = 0.. . 6¢;, the quantity y,£> does not seem to attain any finite
continuum value as we approach the continuum (increasing &).

In the 2d O(3) model, the data presented in Section 3 do not suggest a continuum convergence of
the term & after application of the GF. Further details, including a table with numerical results, are
given in Ref. [25].

However, the impact range X(7) of the GF is short in these examples. It can be estimated based on
the heat kernel K(z, x); in d dimensions we obtain

K(t,x) =

1/2
(27r1)d/2 exp( - °/(4n). 30 = ( f d'x XK, x)) = V2d1. )

In our 2d model it attains at most ¥(6fy) = V241, ~ 1.62 at this stage of our study; this refers to our
largest volume, L = 404, with & = 67.7(3) > %(6ty).

In order to arrive at conclusive results, we are now going to fix an extended GF time unit 7y by
a condition T/&> = constant, and investigate flow times up to an impact range of %(f) ~ £/2. This
study is in progress [33], and it should finally reveal whether or not the GF leads to a continuum
scaling of the quantity y,&.
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