419 research outputs found
Resuscitation and quantification of stressed Escherichia coli K12 NCTC8797 in water samples
The aim of this study was to investigate the impact on numbers of using different media for the enumeration of Escherichia coli subjected to stress, and to evaluate the use of different resuscitation methods on bacterial numbers. E. coli was subjected to heat stress by exposure to 55 °C for 1 h or to light-induced oxidative stress by exposure to artificial light for up to 8 h in the presence of methylene blue. In both cases, the bacterial counts on selective media were below the limits of detection whereas on non-selective media colonies were still produced. After resuscitation in non-selective media, using a multi-well MPN resuscitation method or resuscitation on membrane filters, the bacterial counts on selective media matched those on non-selective media. Heat and light stress can affect the ability of E. coli to grow on selective media essential for the enumeration as indicator bacteria. A resuscitation method is essential for the recovery of these stressed bacteria in order to avoid underestimation of indicator bacteria numbers in water. There was no difference in resuscitation efficiency using the membrane filter and multi-well MPN methods. This study emphasises the need to use a resuscitation method if the numbers of indicator bacteria in water samples are not to be underestimated. False-negative results in the analysis of drinking water or natural bathing waters could have profound health effects
Hemocompatibility tuning of an innovative glutaraldehyde-free preparation strategy using riboflavin/UV crosslinking and electron irradiation of bovine pericardium for cardiac substitutes
Hemocompatibility tuning was adopted to explore and refine an innovative, GA-free preparation strategy combining decellularization, riboflavin/UV crosslinking, and low-energy electron irradiation (SULEEI) procedure. A SULEEI-protocol was established to avoid GA-dependent deterioration that results in insufficient long-term aortic valve bioprosthesis durability. Final SULEEI-pericardium, intermediate steps and GA-fixed reference pericardium were exposed in vitro to fresh human whole blood to elucidate effects of preparation parameters on coagulation and inflammation activation and tissue histology. The riboflavin/UV crosslinking step showed to be less efficient in inactivating extracellular matrix (ECM) protein activity than the GA fixation, leading to tissue-factor mediated blood clotting. Intensifying the riboflavin/UV crosslinking with elevated riboflavin concentration and dextran caused an enhanced activation of the complement system. Yet activation processes induced by the previous protocol steps were quenched with the final electron beam treatment step. An optimized SULEEI protocol was developed using an intense and extended, trypsin-containing decellularization step to inactivate tissue factor and a dextran-free, low riboflavin, high UV crosslinking step. The innovative and improved GA-free SULEEI-preparation protocol results in low coagulant and low inflammatory bovine pericardium for surgical application
Shape-induced force fields in optical trapping
Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines
Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents
Author Posting. © American Society for Microbiology, 2000. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 66 (2000): 3125-3133, doi:10.1128/AEM.66.8.3125-3133.2000.Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 103- and 104-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria.Andreas Teske was supported by DFG postdoctoral fellowship 262-1/1 and a subsequent WHOI postdoctoral fellowship
Food processing and cancer risk in Europe: results from the prospective EPIC cohort study
Background Food processing has been hypothesised to play a role in cancer development; however, data from large-scale epidemiological studies are scarce. This study investigated the association between dietary intake according to amount of food processing and risk of cancer at 25 anatomical sites using data from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Methods This study used data from the prospective EPIC cohort study, which recruited participants between March 18, 1991, and July 2, 2001, from 23 centres in ten European countries. Participant eligibility within each cohort was based on geographical or administrative boundaries. Participants were excluded if they had a cancer diagnosis before recruitment, had missing information for the NOVA food processing classification, or were within the top and bottom 1% for ratio of energy intake to energy requirement. Validated dietary questionnaires were used to obtain information on food and drink consumption. Participants with cancer were identified using cancer registries or during follow-up from a combination of sources, including cancer and pathology centres, health insurance records, and active follow-up of participants. We performed a substitution analysis to assess the effect of replacing 10% of processed foods and ultra-processed foods with 10% of minimally processed foods on cancer risk at 25 anatomical sites using Cox proportional hazard models. Findings 521 324 participants were recruited into EPIC, and 450 111 were included in this analysis (318 686 [70·8%] participants were female individuals and 131 425 [29·2%] were male individuals). In a multivariate model adjusted for sex, smoking, education, physical activity, height, and diabetes, a substitution of 10% of processed foods with an equal amount of minimally processed foods was associated with reduced risk of overall cancer (hazard ratio 0·96, 95% CI 0·95–0·97), head and neck cancers (0·80, 0·75–0·85), oesophageal squamous cell carcinoma (0·57, 0·51–0·64), colon cancer (0·88, 0·85–0·92), rectal cancer (0·90, 0·85–0·94), hepatocellular carcinoma (0·77, 0·68–0·87), and postmenopausal breast cancer (0·93, 0·90–0·97). The substitution of 10% of ultra-processed foods with 10% of minimally processed foods was associated with a reduced risk of head and neck cancers (0·80, 0·74–0·88), colon cancer (0·93, 0·89–0·97), and hepatocellular carcinoma (0·73, 0·62–0·86). Most of these associations remained significant when models were additionally adjusted for BMI, alcohol and dietary intake, and quality. Interpretation This study suggests that the replacement of processed and ultra-processed foods and drinks with an equal amount of minimally processed foods might reduce the risk of various cancer types. Funding Cancer Research UK, l'Institut National du Cancer, and World Cancer Research Fund International
Video-supported Analysis of Beggiatoa Filament Growth, Breakage, and Movement
A marine Beggiatoa sp. was cultured in semi-solid agar with opposing oxygen-sulfide gradients. Growth pattern, breakage of filaments for multiplication, and movement directions of Beggiatoa filaments in the transparent agar were investigated by time-lapse video recording. The initial doubling time of cells was 15.7 ± 1.3 h (mean ± SD) at room temperature. Filaments grew up to an average length of 1.7 ± 0.2 mm, but filaments of up to approximately 6 mm were also present. First breakages of filaments occurred approximately 19 h after inoculation, and time-lapse movies illustrated that a parent filament could break into several daughter filaments within a few hours. In >20% of the cases, filament breakage occurred at the tip of a former loop. As filament breakage is accomplished by the presence of sacrificial cells, loop formation and the presence of sacrificial cells must coincide. We hypothesize that sacrificial cells enhance the chance of loop formation by interrupting the communication between two parts of one filament. With communication interrupted, these two parts of one filament can randomly move toward each other forming the tip of a loop at the sacrificial cell
The influence of ultramafic rocks on microbial communities at the Logatchev Hydrothermal field, located 15°N on the Mid-Atlantic Ridge
The ultramafic-hosted Logatchev hydrothermal field (LHF) on the Mid-Atlantic Ridge is characterized by high hydrogen and methane contents in the subseafloor, which support a specialized microbial community of phylogenetically diverse, hydrogen-oxidizing chemolithoautotrophs. We compared the prokaryotic communities of three sites located in the LHF and encountered a predominance of archaeal sequences affiliated with methanogenic Methanococcales at all three. However, the bacterial composition varied in accordance with differences in fluid chemistry between the three sites investigated. An increase in hydrogen seemed to coincide with the diversification of hydrogen-oxidizing bacteria. This might indicate that the host rock indirectly selects this specific group of bacteria. However, next to hydrogen availability further factors are evident (e.g. mixing of hot reduced hydrothermal fluids with cold oxygenated seawater), which have a significant impact on the distribution of microorganism
Association of Mediterranean diet with survival after breast cancer diagnosis in women from nine European countries: results from the EPIC cohort study
BACKGROUND: The Mediterranean diet has been associated with lower risk of breast cancer (BC) but evidence from prospective studies on the role of Mediterranean diet on BC survival remains sparse and conflicting. We aimed to investigate whether adherence to Mediterranean diet prior to diagnosis is associated with overall and BC-specific mortality. METHODS: A total of 13,270 incident breast cancer cases were identified from an initial sample of 318,686 women in 9 countries from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Adherence to Mediterranean diet was estimated through the adapted relative Mediterranean diet (arMED), a 16-point score that includes 8 key components of the Mediterranean diet and excludes alcohol. The degree of adherence to arMED was classified as low (score 0-5), medium (score 6-8), and high (score 9-16). Multivariable Cox proportional hazards models were used to analyze the association between the arMED score and overall mortality, and Fine-Gray competing risks models were applied for BC-specific mortality. RESULTS: After a mean follow-up of 8.6Â years from diagnosis, 2340 women died, including 1475 from breast cancer. Among all BC survivors, low compared to medium adherence to arMED score was associated with a 13% higher risk of all-cause mortality (HR 1.13, 95%CI 1.01-1.26). High compared to medium adherence to arMED showed a non-statistically significant association (HR 0.94; 95% CI 0.84-1.05). With no statistically significant departures from linearity, on a continuous scale, a 3-unit increase in the arMED score was associated with an 8% reduced risk of overall mortality (HR3-unit 0.92, 95% CI: 0.87-0.97). This result sustained when restricted to postmenopausal women and was stronger among metastatic BC cases (HR3-unit 0.81, 95% CI: 0.72-0.91). CONCLUSIONS: Consuming a Mediterranean diet before BC diagnosis may improve long-term prognosis, particularly after menopause and in cases of metastatic breast cancer. Well-designed dietary interventions are needed to confirm these findings and define specific dietary recommendations
- …