200 research outputs found

    Breakdown of continuum models for spherical probe adhesion tests on micropatterned surfaces

    Get PDF
    Funding Information: SB, DY, EA, and RH acknowledge funding from the European Research Council (ERC) under the European Union's Seventh Framework Program (FP/2007–2013)/ERC Advanced Grant No. 340929 . RMM acknowledges the Alexander von Humboldt Foundation for awarding the “Virtual Humboldt Cluster on the Mechanics and Physics of Adhesion and Grip”.Peer reviewedPublisher PD

    Mechanics of Combining Divergent Herbivores in Cultivated Pastures

    Get PDF
    Sustainable intensification of cultivated pastures is needed in ruminant production if we are to feed a growing world population expected to exceed 9 billion by 2050. Planting pastures of diverse, and therefore more productive and resilient, plant species has been proposed and researched. Despite illustrative examples from wild grasslands (Hofmann, 1989) and rangelands (Glimp, 1988), very little research and even less application of multiple herbivore species (MHS) in cultivated pastures has followed. We review the specific mechanics of divergent domesticated ruminants and theorize how these could best be combined to sustainably intensify meat, milk and fiber production from cultivated pastures around the world

    Gelation Landscape Engineering Using a Multi-Reaction Supramolecular Hydrogelator System

    Get PDF
    Simultaneous control of the kinetics and thermodynamics of two different types of covalent chemistry allows pathway selectivity in the formation of hydrogelating molecules from a complex reaction network. This can lead to a range of hydrogel materials with vastly different properties, starting from a set of simple starting compounds and reaction conditions. Chemical reaction between a trialdehyde and the tuberculosis drug isoniazid can form one, two, or three hydrazone connectivity products, meaning kinetic gelation pathways can be addressed. Simultaneously, thermodynamics control the formation of either a keto or an enol tautomer of the products, again resulting in vastly different materials. Overall, this shows that careful navigation of a reaction landscape using both kinetic and thermodynamic selectivity can be used to control material selection from a complex reaction network

    The Effects of Eye Movement Desensitization and Reprocessing on Prospective Imagery and Anxiety in Golfers

    Get PDF
    © 2018, Copyright © Association for Applied Sport Psychology. In this study we make a novel contribution by examining the effects of an Eye Movement Desensitization and Reprocessing (EMDR) intervention on detrimental prospective imagery in 4 amateur golfers, using a single-case multiple-baseline across-participants design. Postintervention, all participants reported reduced negative imagery effects; Participants 1, 3, and 4 showed reduced cognitive anxiety, Participants 1 and 4 reduced somatic anxiety, and Participant 3 positively relabeled somatic anxiety experiences. Social validation data demonstrated EMDR to be perceived positively and effective in delivering notable changes. Consultancy experiences of using EMDR in golf are discussed, and areas for future researchers and applied practitioners are outlined

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    Metagenomic and Metabolic Profiling of Nonlithifying and Lithifying Stromatolitic Mats of Highborne Cay, The Bahamas

    Get PDF
    BACKGROUND: Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. METHODOLOGY/PRINCIPAL FINDINGS: The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1) and lithifying (Type 3) microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. CONCLUSION/SIGNIFICANCE: The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon utilization. These differences provide a strong link between the metagenome and the physiology of the mats, as well as new insights into the biological processes associated with carbonate precipitation in modern marine stromatolites

    Raman identification of olivine grains in fine grained mineral assemblages fired into aerogel

    Get PDF
    NASA’s Stardust mission returned from the comet 81P/Wild2 in 2006 and has yielded a plethora of research looking into the composition and attributes of the comet. The mission itself collected thousands of cometary dust particles as it flew through the coma of the comet at a relative speed of 6.1 km s-1. This work focuses on one of the most abundant minerals in the solar system – olivine. Previous work has shown capture affects on this mineral in similar impacts to that experienced during the Stardust mission. However, the past work looked into effects on isolated mineral grains which would be a rare occurrence in the Solar System. A more accurate representation of this would be to investigate the capture effects on olivine as a constituent of an assemblage of minerals. Accordingly, here we used samples from the NWA 10256 CR2 carbonaceous chondrite meteorite. This natural sample contains fine grains of olivine, and brings additional issues when analysing the olivine due to limited homogeneity. Shifts in the Raman spectra for olivine, enstatite and hematite were observed after capture due to shock effects. However, this work suggests that olivine may well experience a different shock effect during capture when part of a mineral assemblage as distinct from that experienced by single grains

    Collision activity during training increases total energy expenditure measured via doubly labelled water

    Get PDF
    Purpose: Collision sports are characterised by frequent high intensity collisions that induce substantial muscle damage, potentially increasing the energetic cost of recovery. Therefore, this study investigated the energetic cost of collision-based activity for the first time across any sport. Methods: Using a randomised crossover design, six professional young male rugby league players completed two different five-day pre-season training microcycles. Players completed either a collision (COLL; 20 competitive one-on-one collisions) or non-collision (nCOLL; matched for kinematic demands, excluding collisions) training session on the first day of each microcycle, exactly seven days apart. All remaining training sessions were matched and did not involve any collision-based activity. Total energy expenditure was measured using doubly labelled water, the literature gold standard. Results: Collisions resulted in a very likely higher (4.96 ± 0.97 MJ; ES = 0.30 ±0.07; p=0.0021) total energy expenditure across the five-day COLL training microcycle (95.07 ± 16.66 MJ) compared with the nCOLL training microcycle (90.34 ± 16.97 MJ). The COLL training session also resulted in a very likely higher (200 ± 102 AU; ES = 1.43 ±0.74; p=0.007) session rating of perceived exertion and a very likely greater (-14.6 ± 3.3%; ES = -1.60 ±0.51; p=0.002) decrease in wellbeing 24h later. Conclusions: A single collision training session considerably increased total energy expenditure. This may explain the large energy expenditures of collision sport athletes, which appear to exceed kinematic training and match demands. These findings suggest fuelling professional collision-sport athletes appropriately for the "muscle damage caused” alongside the kinematic “work required”. Key words: Nutrition, Recovery, Contact, Rugb

    Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

    Get PDF
    Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity
    corecore