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A R T I C L E  I N F O   
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A B S T R A C T   

Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values 
interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal 
physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed 
bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under 
various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil char
acterization data were collected as part of the North American Project to Evaluate Soil Health Measurements 
(NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH 
influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants 
(ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical 
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disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, 
were linked to organisms which could produce extracellular polymeric substances and contained metabolic 
strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes micro
bial communities across climates and inherent soil properties and drives changes in Cmin provides the context 
necessary to evaluate management impacts on standardized measures of soil microbial activity.   

1. Introduction 

Over the past few decades numerous biologically based measure
ments have been designed to assess how reducing physical disturbance 
in row-cropping systems impact soil functioning (e.g., cycle nutrients, 
decompose organic matter) and overall soil health. Current measure
ments used by the scientific community to evaluate soil heath include 
microbial biomass, available carbon and nitrogen pools for microbial 
consumption, and potential carbon and nitrogen mineralization (Acos
ta-Martinez et al., 2018; Culman et al., 2012; Gonzalez-Quiñones et al., 
2011; Li et al., 2020; Norris et al., 2020). Greater values recorded in 
systems with reduced physical disturbance, when compared to inten
sively disturbed fields, are commonly interpreted under the assumption, 
“more is better” (Andrews et al., 2004; Haney et al., 2010, 2018; Moe
bius-Clune et al., 2016). However, greater values from these measure
ments are difficult to interpret because the measurements are not 
directly tied to increases in soil function, such as providing adequate 
plant nutrition or improved ecosystem health (e.g., increased carbon 
storage, reduced nitrogen losses) (Fierer et al., 2021). Understanding 
why these widely use measurements respond positively to adoption of 
reduced physical disturbance will allow for appropriate interpretations 
of the measurements and therefore allow stakeholders to understand 
how management choices affect soil function. 

One measure of potential microbial activity related to soil health is 
potential carbon mineralization (Cmin). Soil microbial community 
members respire carbon dioxide as a metabolic waste product while 
degrading organic matter and cycling nutrients. Standardized Cmin as
says report carbon dioxide fluxes following rewetting of air-dried, sieved 
soil under aerobic conditions (Zibilske, 2018), such as from either a 24- 
or 96-h incubation, among other modifications (Haney Soil Health Test 
or the Cornell Comprehensive Assessment of Soil Health, respectively) 
(Haney et al., 2010; Moebius-Clune et al., 2016). Potential carbon 
mineralization values are generally greater in systems employing 
reduced tillage across many soil types and climates (Nunes et al., 2020). 
However, the greater Cmin measurements identified in the standardized 
laboratory assay conflict with in situ carbon mineralization measure
ments, where soils managed for reduced physical disturbance respire 
less carbon dioxide than their less disturbed counterparts (Abdalla et al., 
2016). Nonetheless, Cmin is often interpreted as in situ basal minerali
zation (Haney et al., 2018). Mineralization resulting from standardized 
Cmin assays are a combination of the consumption of newly lysed 
cellular material, fresh metabolic material exuded during rewetting, and 
newly available organic residues following pretreatment of the soils 
(Fierer and Schimel, 2003; Kaiser et al., 2015). Identifying the groups of 
organisms responsible for driving greater Cmin values in soils managed 
for minimal physical disturbance will help provide a scientifically 
backed interpretation of this already widely used measurement, rather 
than relying on the assumption, “more is better.” 

While Cmin generally increases in soils managed for minimal phys
ical disturbance, the impact of physical disturbance on microbial com
munity structure has varied among site-specific studies. Many studies of 
physical disturbance and community structure report significant 
changes in both community structure and community diversity in 
response to disturbance treatments (Ceja-Navarro et al., 2010; De 
Quadros et al., 2012; Schmidt et al., 2018; Sengupta and Dick, 2015; 
Srour et al., 2020; Z. Wang et al., 2016), while just as many others report 
a significant change in only one of the two metrics (Navarro-Noya et al., 
2013; Ng et al., 2012; Schlatter et al., 2019; Schmidt et al., 2019; Smith 

et al., 2016; Yin et al., 2010). Such variability may be associated with 
differences in sampling time, tillage equipment, cropping system his
tory, sample processing, statistical analyses, inherent soil properties, 
and climate factors. Understanding the impact of physical disturbance 
on soil microbial community structure across a range of climates, 
cropping systems, and inherent soil properties (e.g., texture, pH) may 
enhance interpretation of divergent results from site-specific studies. 

Assessment of microbial community structure is capable of identi
fying changes in community composition due to agricultural manage
ment, but it does not provide context as to how the change affects soil 
functioning. Measuring change in microbial community structure and 
function, in unison, provides context as to whether changes in agricul
tural management alter microbial function as well as the potential 
drivers responsible for changes in function. To date, a number of studies 
have attempted to link management driven changes in soil microbial 
community composition to changes in carbon mineralization (Guo et al., 
2019; Khanghahi et al., 2019; Liu et al., 2018; Malik et al., 2018; 
Mbuthia et al., 2015). These studies indicate that analyzing soil micro
bial community composition in addition to inherent soil properties and 
other biological measurements enhances the predictability of carbon 
mineralization. However, the goal of these studies was to uncover 
drivers of basal soil mineralization, which may differ from the organisms 
responsible for driving the burst of mineralization recorded in stan
dardized Cmin incubations. Uncovering the microbial community 
members responsible for driving greater Cmin measurements in systems 
with reduced physical disturbance may provide much needed context to 
the measure, which in turn will allow stakeholders to appropriately 
synthesize their results in the context of building soil health. 

The goal of the present study was to evaluate the impact of reduced 
physical disturbance on soil bacterial and archaeal community members 
and their potential influence on greater Cmin measurements recorded in 
long-term reduced disturbance systems across major agricultural areas 
in North America. We hypothesized that bacterial and archaeal com
munities that were enriched under minimum physical disturbance 
would be important predictors of Cmin. We first explored relationships 
between disturbance intensity and changes in bacterial and archaeal 
community structures. We identified a subset of ASVs which were 
enhanced in systems employing minimum disturbance management 
across a range of inherent soil properties and climates. Finally, we 
identified a suite of bacteria and archaeal taxa, which were enriched 
under minimum disturbance and important predictors of Cmin models. 

2. Methods 

2.1. Sample collection 

Data used in these analyses were collected as part of the North 
American Project to Evaluate Soil Health Measurements (NAPESHM). 
NAPESHM sites were chosen based on the presence of treatments to test 
the management effects of tillage, cover crops, crop rotation, nutrient 
amendments, irrigation, and livestock stocking rate and intensity. A full 
description of the project can be found in Norris et al. (2020). The 
project consisted of 2032 experimental units from 688 replicated 
treatments located at 124 long term experimental agricultural research 
sites across North America (Fig. 1). Out of the 688 replicated treatments, 
568 treatments contained at least ten years of consistent crop rotations 
and agricultural management practices (e.g. tillage, cover cropping), 
while 120 treatments contained between six and ten years of consistent 
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practices. Detailed treatment and site information is located in Table 1, 
Supplemental Table 1, and in Norris et al. (2020). 

Sites were predominantly sampled in spring of 2019 prior to fertil
ization, spring tillage, and planting. Five-year detailed management 
histories were collected for each treatment. Soil sampling for each 
experimental unit was performed using a sharpshooter shovel and soil 
knife. A total of 18 knife slices (15- by 4-cm) were collected uniformly to 
a depth of 15 cm from six locations across each experimental unit in a 
zig-zag pattern and placed on ice. Samples were composited in a bucket 
prior to bagging and shipping. Sampling equipment was cleaned and 
sterilized with isopropyl alcohol between experimental units. Addi
tionally, sterile nitrile gloves were worn during sampling and sample 
processing. 

2.2. Site climate data 

The Hargreaves Climate Moisture Deficit was calculated to capture 
the combined effect of precipitation and temperature (Hargreaves and 
Allen, 2003). The moisture deficit calculations included a monthly es
timate of precipitation deficit averaged from 1991 to 2020 (T. Wang 
et al., 2016). The monthly deficit for a given location represented the 
difference between reference evapotranspiration and precipitation, and 
the deficit is considered zero for any month where precipitation is 
greater than reference evapotranspiration. 

2.3. Laboratory measurements 

For each experimental unit, composite soil samples were sent to the 
Soil Water and Environmental Lab1 at Ohio State University for mea
surement of particle size distribution, pH, total nitrogen, total carbon, 
inorganic carbon, and Cmin. Particle size analyses were performed using 
the pipette method and sands were wet sieved (Gee and Or, 2018). Soil 
pH measurements were made using a 1:2 soil:water slurry with a pH 
electrode (Campbell et al., 2018). Total nitrogen and carbon were 
measured by dry combustion (Nelson and Sommers, 2015). Inorganic 
carbon was measured using Chittick gasometric calcimetera (St. Louis, 
MO, USA). Soil organic carbon was calculated as the difference between 

Fig. 1. Experimental unit sampling locations included in the North American 
Project to Evaluate Soil Health Measurements (NAPESHM). Concentric circles 
indicate sites containing at least 12 experimental units with paired tillage 
treatments. The map is colored by Hargreaves Climate Moisture Deficit. 

Table 1 
Primary tillage implements used in disturbance category analyses.  

Site ID Disturbance Category Crop Rotation 

Minimum Moderate Intense 

CASK01 Planting 
only 

N/A Cultivate Spring wheat- 
fallow; wheat- 
pea, chickpea, 
lentil pulse 

MXEM01 Planting 
only 

N/A Disk harrow, 
chisel plow 

Continuous corn; 
continuous 
wheat; wheat- 
corn 

MXSO03 Planting 
only 

N/A Disk harrow, 
chisel plow 

Continuous 
spring wheat; 
wheat-corn 

USAL01 Planting 
only 

N/A Rototill, disk Corn-soybean 

USAL03 N/Aa Strip-till Moldboard bahiagrass- 
bahiagrass- 
peanut-cotton; 
peanut-cotton 

USCA03 Planting 
with 
fertilizer 
shank 

N/A Subsoiler, 
disk harrow, 
bedder 

Garbanzo bean- 
sorghum 

USIL02 Planting 
only 

Chisel plow, 
disk harrow, 
row cultivate 

Moldboard, 
disk harrow, 
cultivate 

Corn-soybean 

USIN01 Planting 
only 

Chisel plow, 
disk harrow, 
row cultivate 

Moldboard, 
disk harrow, 
cultivate 

Continuous corn; 
continuous 
soybean; corn- 
soybean 

USKY03 Planting 
only 

N/A Moldboard, 
disk harrow 

Continuous corn 

USMI01 N/A Strip-till, row 
cultivate, disc 
harrow 

Disk harrow, 
rototill, row 
cultivate 

Specialty 
vegetables 

USMI02 N/A Spring strip- 
till, fall disc 
harrow 

Moldboard, 
disk harrow 

Specialty 
vegetables 

USMO01 Planting 
only 

Biennial spring 
chisel and fall 
disc harrow 

N/A Corn-soybean 

USNC01 Planting 
only 

N/A Chisel plow 
and rotary 
hoe 

Corn-soybean- 
sorghum 

USND01 Planting 
only 

Spring 
cultivate 

N/A Spring wheat- 
fallow; spring 
wheat-corn; 
spring wheat- 
corn-soybean 

USND02 Planting 
only 

Fall disk 
harrow and 
chisel plow; 
Spring 
cultivate every 
four year 

Chisel plow, 
disk harrow, 
cultivate 

Spring wheat- 
field pea- corn- 
soybean 

USNY01 Planting 
with double 
disk 
fertilizer 
opening 

N/A Moldboard, 
cultivate 

Continuous corn 

USNY04 Planting 
with double 
disk 
fertilizer 
opening 

N/A Moldboard, 
cultivate 

Continuous corn 

USOH02 Planting 
only 

Chisel and 
rototill 

Moldboard, 
rototill 

Corn; corn- 
soybean; corn- 
alfalfa-alfalfa 

USOH03 Planting 
only 

Chisel and 
cultivate 

Moldboard, 
disk harrow, 
cultivate 

Corn; corn- 
soybean; corn- 
red clover-red 
clover  

a Treatment was not present at study location. 

1 Name is given to provide specific information and does not constitute 
endorsement by the authors over other entities that may be equally suitable. 
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total carbon and inorganic carbon (Dreimanis, 1962). Soil samples used 
in Cmin measurements were air dried and passed through a 2-mm sieve 
prior to incubation. Potential carbon mineralization was measured as 
accumulation of CO2–C following rewetting by capillary action and a 
24-h incubation period (Zibilske, 2018). 

2.4. DNA extraction and sequencing 

Composite moist soil samples from each experimental unit were 
passed through a sterile 8-mm sieve and shipped overnight on ice to the 
Center for Genome Research and Biocomputing at Oregon State Uni
versity for DNA extraction and subsequent sequencing. From each 
experimental unit, 0.25 g of soil was weighed for DNA extraction. DNA 
extractions were performed using a Thermo KingFisher Flex robotic 
magnetic bead systema (Swindon, UK) with Qiagen MagAttract Power 
Soil DNA kitsa (Germantown, MD, USA). A Zymbiotics microbial com
munity standard was included on each DNA extraction plate. DNA 
concentrations were quantified fluorometrically using the Invitrogen 
Quant-iT dsDNA High Sensitivity Assay Kita (Waltham, Massachusetts, 
USA) and read on a BioTek Synergy HT microplate readera (Winooski, 
VT, USA). 

Following Earth Microbiome Project protocols (Caporaso et al., 
2018), the V4 region of 16S rRNA was amplified and sequenced using 
the Illumina MiSeq platforma. The QIIME 2 platform was used for 
classification of reads to taxa counts (v. 2019.4). Adapters were trimmed 
with the qiime cutadapt trim-paired tool. Read pairs were merged with 
qiime vsearch join-pairs with a maximum merge length of 256 base pairs 
and removing any reads with any Ns present. Reads were filtered for a 
minimum PHRED score of 20. QIIME deblur denoise-16S was used to 
denoise the reads by removing reads that did not have a sequence sim
ilarity of 60% to the 85% OTU GreenGenes database and reads were 
trimmed to 250 base pairs or discarded if shorter. Results were tabulated 
with the qiime feature-table tabulate-seqs. Taxonomy were assigned 
with the QIIME feature-classifer classify-sklearn using the silva database 
classifier version 132. Data was exported from QIIME2 with QIIME tools 
export. Amplicon sequence variants that were observed less than three 
times in 5% of samples were removed. Remaining samples were rarified 
to 8000 sequences using the function rarify_even_depth in the R package 
phyloseq (McMurdie and Holmes, 2013). Rarified samples were used in 
all downstream analyses. Demultiplexed sequences were deposited in 
the National Center for Biotechnology Information Sequence Read 
Archive with the following accession number: PRJNA762046. 

2.5. Statistical analysis 

In addition to treatments that represented management changes, 
sites included in the study cover a broad range of climates, inherent soil 
properties, and organic matter. To identify significant differences in 
community structure as a result of differences in inherent soil properties 
and climate, permutational multivariate analysis of variance (PERMA
NOVA) with distance matrices was performed using the Adonis function 
in the R package vegan (Dixon, 2003). Canonical correspondence 
analysis was also performed to visualize how inherent soil properties 
and climate were related to community structure using the ordinate 
function. Alpha diversity was assessed by calculating Shannon Diversity 
Index values for all experimental units. Shannon Diversity and richness 
were calculated using the estimate_richness function in the R package 
phyloseq (McMurdie and Holmes, 2013) Experimental units with 
extreme Shannon Diversity and richness outliers were removed from the 
dataset. 

A subset of replicated, paired tillage treatments was selected from 
nineteen sites for specific disturbance-based analysis (Fig. 1, Table 1). 
For this analysis, only sites which contained at least twelve experimental 
units evenly distributed across two or more tillage regimes were 
included in disturbance analyses. Furthermore, treatments were only 
included in disturbance analyses if a paired treatment existed, that is the 

only difference in management was physical disturbance through 
tillage. Treatments were classified into minimum, moderate, or intense 
disturbance categories. Minimum disturbance included experimental 
units whose only physical soil disturbance occurred during planting, 
commonly referred to as “no-till”. Moderate disturbance encompassed a 
wide range of reduced or conservation tillage practices, including strip 
tillage, row cultivation, and chisel plow. Intense disturbance included 
experimental units from treatments commonly described as “conven
tional tillage” where practices are among the most disruptive tillage 
practices for a given cropping system and climate. Sites included in 
tillage analyses were assigned a six-digit unique identifier (Supple
mentary Table 1). Additionally, treatments that only differed by tillage 
were assigned a two-digit unique identifier to ensure direct comparison 
of the treatments in downstream analyses. To visualize differences in 
community structure among disturbance categories, detrended corre
spondence analyses (DCAs) were performed with bray-curtis distance 
matrices to account for non-linear relationships. Significant differences 
in community structure as a function of physical disturbance at indi
vidual sites were assessed using adonis function in the vegan package 
(Dixon, 2003). If a site contained a factorial design (e.g. tillage and cover 
cropping), the non-tillage factor was accounted for using the strata 
argument to ensure the direct comparison of treatments that only 
differed by tillage regimes. Permutational analysis of multivariate dis
persions were assessed prior to implementing PERMANOVA using the 
betadisp function in the vegan package (Dixon, 2003). Non-significant 
values (p > 0.05) confirmed that the paired treatments contained 
similar within treatment variances, indicating significant differences in 
beta diversity were due to differences in physical disturbance 
treatments. 

Experimental units from sites with significant differences in com
munity structure due to physical disturbance, were used to identify ASVs 
whose abundances were significantly enriched in reduced disturbance 
treatments across all sites. Enrichment of specific ASVs was determined 
by differential expression analyses based on the negative binomial dis
tribution (Gamma-Poisson), performed using the function Deseq from 
the R package DESeq2 (Love et al., 2018) with Wald tests as the test 
argument. Amplicon sequence variants were considered differentially 
expressed when p < 0.05. Three separate analyses were performed to 
identify: 1) ASVs that were in enriched in minimum disturbance treat
ments in relation to intense disturbance treatments, 2) ASVs that were 
enriched in minimum disturbance treatments in relation to moderate 
disturbances treatments, and 3) ASVs that were enriched in moderate 
disturbance treatments in relation to intense disturbance treatments. 
The analysis was performed on rarefied experimental units due to large 
differences among experimental unit library sizes (~10x) (Weiss et al., 
2017). Lastly, differences in alpha diversity were assessed separately 
between the three disturbance comparisons described above using the 
lm function contained within the base R package. In each analysis, 
disturbance category was set as a fixed effect and tillage treatment 
comparison as random effect using the assigned two-digit unique iden
tifiers, therefore permitting comparison of treatments which only 
differed by physical disturbance. Model outputs were assessed using the 
anova function, contained within the base R package, to identify sig
nificant differences between disturbance categories. 

Random forest regression models were employed to identify micro
bial drivers of Cmin measurements. Thirty random forest regressor 
models were fit to the full set of 689 experimental treatments to help sort 
and filter ASVs that were most highly associated with Cmin. In each 
model run, Cmin was the response variable, with ASVs as predictor 
variables. The ASVs included in the final set models were pruned by 
average abundance until total model permutation importance began to 
decline, resulting in 328 ASVs contained in each model. Training and 
testing datasets were built at random for each model iteration, with 
experimental units from 586 to 608 treatments randomly selected for 
inclusion in the training dataset, resulting experimental units from 80 to 
102 treatments placed in the testing dataset. The set of fitted models had 
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an average R2 of 0.58 predicting on testing data sets, which were held 
out from model training. The average ASV importance across models 
was used to estimate the relative utility of each ASV for predicting on 
testing data sets. Here, ASV importance is the difference between the 
initial prediction fit and the prediction fit after randomly permuting the 
respective ASV data. These analyses were performed in the Scikit-learn 
Python module ((Pedregosa et al., 2011); version 0.23.1, https://scikit 
-learn.org/stable/). The maximum number of ASVs allowed in any 
regression tree was 18 (328½), with minimization of the mean squared 
residual error as the model criteria. The relationships between individ
ual ASVs contained in the top decile of importance and Cmin were 
explored using linear regression. Code for analyses is located at https:// 
github.com/erieke/NAPESHM-tillage-mineralization. 

3. Results 

3.1. Continental community and cmin assessment 

Experimental units covered a wide range of inherent soil properties 
and climates (Table 2). Following rarefaction, 1924 experimental units 
remained in the dataset, consisting of 5322 unique ASVs. Twenty-seven 
phyla were identified in the dataset, with major contributions from 
Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria, and Verroco
microbia. Shannon’s diversity index ranged from 4.36 to 6.70, while 
observed ASV richness ranged from 342 to 1580. Greatest diversity and 
richness were observed at moderate pH values (5.5–7.5) and humid 
climates (Fig. 2). The PERMANOVA among communities across the 
continent indicated pH and climate moisture deficit explained more 
variation than clay, sand, soil organic carbon and total nitrogen 
(Table 2). Furthermore, the canonical correspondence analysis results 
suggest that climate and inherent soil properties predict only a small 
fraction of microbial community structure (Supplementary Fig. 1). 

An in-depth analysis of Cmin in relation to climate, inherent soil 
properties, carbon-based soil health indicators, and agricultural man
agement can be found in Liptzin et al. (Liptzin et al., n.d.). Briefly, 
measures of Cmin ranged from 4.7 to 126.7 mg C kg− 1d− 1, with a me
dian of 49.0 mg C kg− 1d− 1. Potential carbon mineralization and soil 
organic carbon were moderately related (r = 0.58). Prediction of Cmin 
with inherent soil properties and climatic variables using multiple linear 
regression resulted in a R2 value of 0.27. Clay, pH and precipitation were 
positively correlated with the measurement, while temperature was 
negatively correlated. Response ratios of paired treatments indicated 
significantly greater Cmin in systems employing reduced tillage, cover 
cropping, application of organic nutrients, or residue retention. 

3.2. Microbial response to tillage intensity 

Out of the 14 sites that contained at least 12 experimental units with 
minimum and intense disturbance comparisons, 11 contained signifi
cantly different microbial community structures (p < 0.01) as a result of 
differences in disturbance, which were identified using the adonis 
function (Fig. 3, Supplementary Table 2). The three sites with non- 
significant differences (p > 0.01) all contained wheat-centric rotations 

(Table 1). Differential abundance testing of the 214 experimental units 
from the 11 sites identified 717 ASVs whose abundances were signifi
cantly greater in minimum disturbance experimental units (p < 0.05). 
The associated ASVs represent 119 of 242 families identified in both 
minimum and intense disturbance experimental units. On average, the 
ASVs accounted for 16% of sequences associated with intense distur
bance experimental units, and 33% of sequences were associated with 
minimum disturbance. The 717 ASVs were confined within 14 phyla, 
with most sequences associated with Acidobacteria, Actinobacteria, Bac
teroidetes, Gemmatimondetes, Proteobacteria, Rokubacteria, and Verroco
microbia (Fig. 4). Alpha diversity, represented by the Shannon Diversity 
Index, and richness were not significantly different (p > 0.10) between 
minimum and intense disturbance categories (Supplementary Fig. 2). 

While most minimum and intense disturbance comparisons returned 
significant differences in community structure at the site level, com
parisons between minimum and moderate disturbance returned mixed 
results. Among the minimum and moderate disturbance comparisons, 
four of seven sites had significant differences (p < 0.01) in bacterial and 
archaeal community structures which were identified using the adonis 
function (Supplementary Table 3). The four sites with significant dif
ferences in community structure all contained a site average pH ≤ 5.7 or 
pH > 6.5 (Supplementary Table 3). Differential abundance testing of the 
76 experimental units from the four sites returned 242 ASVs whose 
abundances were enriched (p < 0.05) in minimum compared to mod
erate disturbance. In general, the resulting ASVs accounted for 14% of 
ASV relative abundance in minimum disturbance and 4% of ASV relative 
abundance in moderate disturbance. Of the 75 bacterial and archaeal 
families enriched under minimum disturbance compared to moderate 
disturbance, 73 were also enriched in minimum compared to intense 
disturbance. Lastly, alpha diversity and richness were not significantly 
different (p > 0.10) between minimum and moderate disturbance 
(Supplementary Fig. 3). 

Sites with moderate and intense physical disturbance comparisons 
returned a similar percentage of site level differences to minimum- 
moderate disturbance comparisons, with four of eight sites containing 
significant differences due to disturbance (p < 0.01) (Supplementary 
Table 4) identified using the adonis function. The four sites with sig
nificant differences in community structure all contained a site average 
pH ≤ 5.7 or pH > 6.5 (Supplementary Table 4). Additionally, differential 
abundance testing of the 74 experimental units from the four sites 
identified a similar number of enriched ASVs. However, the 282 ASVs, 
comprised of 77 unique families, enriched under moderate disturbance 
compared to intense disturbance accounted for similar relative abun
dances in the two treatments. Like minimum-intense and minimum- 
moderate comparisons, alpha diversity and richness did not signifi
cantly differ (p > 0.10) between moderate and intense treatments 
(Supplementary Fig. 4). 

3.3. Modeling respiration with bacterial and archaeal community 
members 

Three hundred and twenty-eight ASVs remained in the respiration 
model training dataset, post pruning, and on average, accounted for 
44% of sequences in rarified experimental units. The respiration model 
had substantial predictive power (R2 = 0.58) between predicted and 
actual respiration values. Amplicon sequence variants belonging to 
Proteobacteria contributed the most to variable importance, followed by 
Acidobacteria, and Verrocomicrobia, (Supplementary Fig. 5, Supplemen
tary Table 5). Of the 328 ASVs included in the respiration model, 90 
were significantly enriched in minimum disturbance systems compared 
to intensive disturbance systems (Supplementary Table 6). Additionally, 
44% of the ASVs with model importance in the top decile were enriched 
in minimum disturbance systems compared to intensive disturbance 
systems (Fig. 5). Furthermore, all but one ASV contained in the top 
decile of important sequences contained weak, but significant relation
ships with Cmin (p < 0.01), which were identified through individual 

Table 2 
16S rRNA permutational multivariate analysis of laboratory soil measurements 
and climate. All measurement analyses were significant (p < 0.01).  

Measurement r2 na Minimum Maximum Median 

Clay (%) 0.04 1909 2 63 21 
Sand (%) 0.01 1909 3 91 32 
pH 0.12 1909 4.0 9.0 6.3 
Soil Organic Carbon (%) 0.02 1909 0.20 10.42 1.49 
Hargreave Climate 

Moisture Deficit (mm) 
0.07 1909 93 1773 259 

Total Nitrogen (%) 0.02 1903 0.02 1.07 0.14  

a Number of samples included in the analysis. 
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linear regressions, with r2 values ranging from 0.01 to 0.15. The vast 
majority of ASVS that were enriched in minimum disturbance and 
contained within the top decile of model importance contained signifi
cant (p < 0.01), positive relationships with Cmin (Fig. 5). 

4. Discussion 

The majority of sites analyzed for shifts in community structure in 
relation to minimal and intensive disturbance comparisons exhibited 
significantly different shifts in community structures. The three loca
tions with non-significant differences in community structure had pre
dominantly wheat-based rotations. Previous site-specific studies 
consistently reported significant differences in community structure 
because of physical disturbance in corn-based rotations (De Quadros 
et al., 2012; Sengupta and Dick, 2015; Smith et al., 2016; Srour et al., 
2020). However, prior results from wheat-based rotations are less 
definitive, with differences in community structure varying by location 
(Essel et al., 2019; Ng et al., 2012; Schlatter et al., 2019; Yin et al., 2010). 
Insignificant differences in microbial community structure due to 
disturbance in wheat-based rotations may stem from greater root den
sity and/or composition associated with wheat plant roots compared to 

Fig. 2. 16S rRNA Shannon Diversity Index values for North American Project to Evaluate Soil Health Measurements experimental units plotted against pH. Colors 
represent Hargreaves Moisture Deficit values for each experimental unit. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 3. Detrended correspondence analysis (DCA) of treatments from sites with 
significant differences in bacterial and archaeal community structure between 
minimum and intense disturbance comparisons. 

Fig. 4. Average relative abundances of 717 amplicon sequence variants enriched under minimum tillage when compared to intensive tillage, grouped by site.  
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other crop rooting systems included in the study (Yamaguchi and 
Tanaka, 1990). Increasing below ground biomass decay may enhance 
microbial access to nutrient rich organics in a similar fashion to residue 
incorporation following tillage operations. 

Significant differences in minimum-moderate and moderate-intense 
disturbance comparisons were less consistent in this study, with just 
over half containing significant differences in community structure due 
to differences in disturbance treatments. Differences in physical soil 
disturbance between minimum-moderate disturbance and moderate- 
intense disturbance treatment comparisons were not as extreme as 
minimum-intense comparisons. However, trends in significance be
tween these treatments were identified in relation to pH. Minimum- 
moderate and moderate-intense site level disturbance comparisons did 
not contain significantly different (p > 0.01) microbial community 
structures at locations where site average pH ranged from 5.7 to 6.5, 
while locations with site average pH ≤ 5.7 or pH > 6.5 contained 
significantly different community compositions (p < 0.01). Average 
alpha diversity, measured as Shannon’s Diversity Index, and richness 
were slightly greater at tillage sites with pH ranges from 5.7 to 6.5. 
Increasing diversity has shown to enhance resilience in some microbial 
systems, but not in others (Shade et al., 2012). Resiliency in microbial 
communities is defined as “the rate at which a microbial community 
returns to its original composition after being disturbed” (Allison and 
Martiny, 2008). The insignificant differences between less disruptive 
comparisons are indicative of microbial resilience to physical disruption 
in slightly acidic soils. This differential response to moderate changes in 
disturbance when grouped by pH, may be indicative of a link between 
archaeal and bacterial diversity and resilience driven by inherent fea
tures and part of the reason why some soils are less susceptible to 
changes in function as a result of changes in management (i.e., soils 
below pH 5.7 or above 6.5). However, this resilience to changes in 
management may be less evident in soil fungal communities, which are 
less dependent on soil pH when compared to bacterial communities 
(Lauber et al., 2008). 

The sampling strategy employed allowed us to identify management 
conditions capable of creating divergent soil microbial community 
structures. Significant differences in bacterial and archaeal community 
structure among non-wheat based, minimum-intense tillage compari
sons demonstrate community divergence as a result of repeated tillage 
over multiple years. Differential abundance testing of minimum-intense 
tillage treatments with significant differences allowed us to identify 
ASVs responsible for the change in community structure across loca
tions. ASVs identified as Pedosphaerales, contained within the phylum 

Verrucomicrobia, were highly abundant and enriched under minimum 
tillage conditions when compared to intensive tillage. While Verruco
microbia is a dominant phylum in soil (Bergmann et al., 2011), ac
counting for over 50% of bacterial 16S rRNA gene sequences in native 
tall grass prairie soils in the USA (Fierer et al., 2013), their functioning in 
soil remains poorly understood. Although much remains to be uncov
ered regarding Pedosphaerales functional potential, the order has been 
identified as an indicator of large macroaggregates (Bach et al., 2018), 
as well as enriched in permanent raised beds when compared to tilled 
raised beds (Jiménez-Bueno et al., 2016). Coupling indicators of soil 
health and relative abundance of microbial community members can 
shed light on the mechanisms behind why practices enhance soils’ 
ability to function. Work has shown that minimum tillage systems 
compared to intensive tillage generally: 1) increase macroaggregate 
stability (Al-Kaisi et al., 2014; Zhang et al., 2018), 2) increase soil 
organic carbon (Nunes et al., 2020), and 3) enhance relative abundance 
of Pedosphaerales. Furthermore, tall grass prairies and other minimally 
managed perennials contain greater measures of aggregate stability and 
soil organic carbon than row cropping systems that utilize soil health 
promoting practices (i.e., reduced tillage, cover crops, organic amend
ments) (Grandy and Robertson, 2007). Together this indicates that in 
the top 15 cm of soil the repeated pulse events of tillage shift the mi
crobial community and soil structure away from organisms known to 
exist in unmanaged, natural systems. Conversely a major reduction in 
physical disturbance can redirect the community structure, back toward 
a naturally functioning soil. 

Reducing tillage often leads to increases in stable aggregates 
(Al-Kaisi et al., 2014; Zhang et al., 2018). Stable aggregates form niche 
microbial communities, capable of supporting oligotrophic lifestyles 
(Bach et al., 2018). ASVs matching Acidobacteria Subgroup 6 were highly 
abundant, enriched under minimum disturbance, and important se
quences in modeling Cmin. Acidobacteria are present in a wide range of 
habitats across the globe and constitute on average 20% of bacteria in 
soils (Janssen, 2006). Although Acidobacteria are present across a variety 
of environments, relatively little is known about the phylum due to 
difficulties related to culturing individual isolates. The first Subgroup 6 
isolates were cultivated in 2011 and characterized as slow growing, 
adaptive to very low nutrient concentrations, and produced uncharac
terized extracellular polymeric substances (George et al., 2011). 
Sequencing efforts of Acidobacteria Subgroup 6 have revealed the pres
ence of cellulose synthesis genes and a multitude of high molecular 
weight proteins with excretion pathway motifs, which are postulated to 
be involved in extracellular polymeric substance production (Kielak 

Fig. 5. Top 10% of most important amplicon 
sequence variants included in the random forest 
regression potential carbon mineralization model. 
Sequences are labeled by finest level of available 
taxonomic classification. Importance was calculated 
as the average reduction in mean square error across 
thirty model simulations. Asterisks above a given 
sequence importance indicates the sequence was 
enriched under minimum disturbance when 
compared to intensively disturbed systems. Plus 
symbols above a given sequence indicate the 
sequence had a significant (p < 0.01), positive rela
tionship with potential carbon mineralization. Nega
tive symbols above a given sequence indicate the 
sequence had a significant (p < 0.01), negative rela
tionship with potential carbon mineralization. Re
lationships were identified using linear regression.   
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et al., 2016). Extracellular polymeric substances are largely responsible 
for building biofilm structure and function (Wingender et al., 1999) and 
are highly correlated with aggregate stability (Redmile-Gordon et al., 
2020). Additionally, extracellular polymeric substance production helps 
regulate osmotic pressure faced by bacteria under changing moisture 
regimes (Roberson and Firestone, 1992). Bacteria and archaea capable 
of producing extracellular polymeric substances have demonstrated 
higher survival rates when subjected to desiccation (Anderson et al., 
2012; Tamaru et al., 2005), which may indicate they are better equipped 
to resume activity following the drying and rewetting in Cmin 
measurements. 

Candidatus Udaeobacter, contained in the phylum Verrucomicrobia, 
was also enriched under minimum disturbance conditions and was an 
important contributor to the Cmin regression model. Candidatus 
Udaeobacter is widespread in soils, but has not yet been successfully 
grown in the laboratory (Poehlein and Schöning, 2020). However, a 
recently published metagenome-assembled genome revealed enriched 
amino acid transporter and protease gene concentrations in Candidatus 
Udaeobacter compared to other soil bacteria with larger genomes 
(Brewer et al., 2016). The authors speculated the bacteria is able to 
prosper in resource limiting conditions through acquisition of amino 
acids and vitamins contained in the soil environment, rather than in
ternal biosynthesis (Brewer et al., 2016). One proposed mechanism for 
Cmin bursts measured following drying and rewetting of soil is con
sumption of cytoplasmic substances exuded by bacteria to regulate 
changing osmotic pressure upon rewetting (Fierer and Schimel, 2003). 
Candidatus Udaeobacter and other bacteria capable of utilizing expelled 
cytoplasmic substances may contribute to greater standardized Cmin 
measurements in minimum tillage systems when compared to an 
intensively tilled soil. 

Results from NAPESHM indicated Cmin was significantly greater in 
systems managed for minimal physical disturbance when compared to 
systems with greater physical disturbance (Liptzin et al., n.d.). However, 
these results are not indicative of in situ carbon mineralization in similar 
cropping systems where mineralization is lower in systems managed for 
minimal disturbance (Abdalla et al., 2016). Potential carbon minerali
zation measured in the laboratory rewetting incubation is a result of the 
consumption of cells lysed during drying, fresh metabolic waste, and 
newly available organic residues resulting from physical disruption 
(Fierer and Schimel, 2003; Kaiser et al., 2015). Soils managed for min
imal physical disturbance generally contain greater amounts of organic 
carbon in the top 15 cm than highly disturbed counterparts (Nunes et al., 
2020). Increases in organic carbon may be partially attributed to in
creases in aggregation, which can lead to organic residues becoming 
physically unavailable for microbial consumption (Paustian et al., 
2019). Disruption of aggregates through sieving prior to the incubation 
releases an unknown fraction of organic residues previously unavailable 
for microbial consumption. The diverse set of bacterial and archaeal 
taxa whose abundances were important in predicting Cmin are indica
tive of the broad range of newly available organic compounds available 
for microbial consumption. Furthermore, within the top 15 cm of soil, 
many bacterial and archaeal community members reside in aggregates 
containing unique sets of organisms, which adapt to organic matter re
sources, pore-space networks, and water and oxygen availability (Bach 
et al., 2018). Disruption of these habitats during the sieving and drying 
process may alter access to water, oxygen, and organic matter resources, 
depending on the soil in question. Understanding which bacteria and 
archaea are capable of thriving post drying and sieving and the mech
anisms they employ (e.g., biofilm formation, alternative nutrient con
sumption) will provide further context as to why soils managed for 
minimum disturbance report greater Cmin than their disturbed coun
terparts. Sequences deemed important when modeling Cmin and 
enriched under minimum disturbance provide a starting point for un
derstanding the microbial community members which influence Cmin. 

4.1. Conclusions 

The unique sampling design incorporated in this study elucidated a 
set of ASVs that were enriched in soils under minimum tillage man
agement across soil types and climates. Results from this study indicate 
that type of cropping system, intensity of physical disruption, and soil 
pH all influence the degree of archaeal and bacterial sensitivity to 
tillage. The multiple factors capable of affecting bacterial and archaeal 
community structure may explain divergent results among site specific 
studies and underscore the importance of limiting interpolation of in
dividual studies to a broad scale. These results indicate a benefit to 
performing analyses across a range of agricultural soils to capture how 
core microbial members respond to changes in agricultural 
management. 

The subset of ASVs enriched under minimum disturbance manage
ment and identified as important variables in random forest regression 
modeling, provide insight into the bacterial and archaeal community 
members who may be responsible for increases in Cmin measurements 
in systems with reduced tillage. While many biologically based soil 
health measurements are sensitive to management, few are tied to 
changes in soil function. Better understanding the microbial drivers of 
widely used soil health indicators, such as Cmin, rather than interpreting 
increases in measurements as an indication of increasing soil health, 
provides stakeholders context as to why the measures increase in soils 
managed for minimal disturbance. Soils with reduced disturbance foster 
bacterial and archaeal organisms with diverse lifestyles as a function of 
niche diversity developed within stable aggregates. Stable microbial 
communities formed in aggregates in soils managed for minimal phys
ical disturbance represent communities capable of functioning in the 
absence of nutrient rich amendments. Understanding how soil micro
organisms adapt and function in agricultural systems managed for 
minimal physical disturbance may provide the appropriate context for 
stakeholders to interpret Cmin results and help guide adoption of the 
practice. 
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