202 research outputs found

    KSHV-Encoded MicroRNAs: Lessons for Viral Cancer Pathogenesis and Emerging Concepts

    Get PDF
    The human genome contains microRNAs (miRNAs), small noncoding RNAs that orchestrate a number of physiologic processes through regulation of gene expression. Burgeoning evidence suggests that dysregulation of miRNAs may promote disease progression and cancer pathogenesis. Virus-encoded miRNAs, exhibiting unique molecular signatures and functions, have been increasingly recognized as contributors to viral cancer pathogenesis. A large segment of the existing knowledge in this area has been generated through characterization of miRNAs encoded by the human gamma-herpesviruses, including the Kaposi's sarcoma-associated herpesvirus (KSHV). Recent studies focusing on KSHV miRNAs have led to a better understanding of viral miRNA expression in human tumors, the identification of novel pathologic check points regulated by viral miRNAs, and new insights for viral miRNA interactions with cellular (ā€œhumanā€) miRNAs. Elucidating the functional effects of inhibiting KSHV miRNAs has also provided a foundation for further translational efforts and consideration of clinical applications. This paper summarizes recent literature outlining mechanisms for KSHV miRNA regulation of cellular function and cancer-associated pathogenesis, as well as implications for interactions between KSHV and human miRNAs that may facilitate cancer progression. Finally, insights are offered for the clinical feasibility of targeting miRNAs as a therapeutic approach for viral cancers

    Assessing the potential impacts of CO2 leakage on fresh groundwater: from experiments to predictive models

    No full text
    International audienceGeological storage of CO2 in deep saline aquifers is one of the options considered for the mitigation of CO2 emissions into the atmosphere. A deep geological CO2 storage is not expected to leak, however, potential impacts of CO2 leakage into aquifers overlying deep storage site have to be addressed. . A better understanding on how it could affect groundwater quality, aquifer minerals and trace elements mobilization is necessary to fully characterize a future storage site. Moreover, this characterization is required to evaluate monitoring and remediation plans. As part of the collaborative project CIPRES co-funded by the ANR, we present reactive transport works dedicated to the impact assessment of CCS on fresh groundwaters.In a 3D model using ToughReact v.3, we perform different CO2 leakage scenarios in a confined aquifer. This study focuses on theAlbian aquifer that is a strategic water resource in the Paris Basin. The model is based on groundwater and rock chemistry of the Albian green sand layer (i.e. Quartz, Glauconite, Kaolinite) at 700 m deep. The geochemical model was elaborated from experimental data (Barsotti et al. 2016 and Humez et al. 2014) taking into account kinetics for mineral dissolution, ion exchange and surface complexation processes. The numerical mesh consists of 200 mƗ 500 m Ɨ 60 m. A grid refinement near the leakage point is considered to focus on local phenomena e.g. secondary precipitation, surface processes. The total mesh comprises 21600 cells. The results highlight the importance of sorption processes on trace element mobilization and transport (As, Zn and Ni) in fresh groundwater. Moreover, we distinguish different geochemical behavior (CO2 plume shape, secondary precipitation, desorption...) occurring at different depth and length scale according to the horizontal flow rates and density effects that are influenced by hydrodynamic properties (regional gradient). Coupling geochemical processes and regional flows influence on water chemistry evolution allows to strengthen monitoring and verification plan as well remediation perspectives

    The phase diagrams of KCaF3 and NaMgF3 by ab initio simulations

    Get PDF
    ABF3 compounds have been found to make valuable low-pressure analogues for high-pressure silicate phases that are present in the Earthā€™s deep interior and that may also occur in the interiors of exoplanets. The phase diagrams of two of these materials, KCaF3 and NaMgF3, have been investigated in detail by static ab initio computer simulations based on density functional theory. Six ABF3 polymorphs were considered, as follows: the orthorhombic perovskite structure (GdFeO3-type; space group Pbnm); the orthorhombic CaIrO3 structure (Cmcm; commonly referred to as the ā€œpost-perovskiteā€ structure); the orthorhombic Sb2S3 and La2S3 structures (both Pmcn); the hexagonal structure previously suggested in computer simulations of NaMgF3 (P63/mmc); the monoclinic structure found to be intermediate between the perovskite and CaIrO3 structures in CaRhO3 (P21/m). Volumetric and axial equations of state of all phases considered are presented. For KCaF3, as expected, the perovskite phase is shown to be the most thermodynamically stable at atmospheric pressure. With increasing pressure, the relative stability of the KCaF3 phases then follows the sequence: perovskite ā†’ La2S3 structure ā†’ Sb2S3 structure ā†’ P63/mmc structure; the CaIrO3 structure is never the most stable form. Above about 2.6 GPa, however, none of the KCaF3 polymorphs are stable with respect to dissociation into KF and CaF2. The possibility that high-pressure KCaF3 polymorphs might exist metastably at 300 K, or might be stabilised by chemical substitution so as to occur within the standard operating range of a multi-anvil press, is briefly discussed. For NaMgF3, the transitions to the high-pressure phases occur at pressures outside the normal range of a multi-anvil press. Two different sequences of transitions had previously been suggested from computer simulations. With increasing pressure, we find that the relative stability of the NaMgF3 phases follows the sequence: perovskite ā†’ CaIrO3 structure ā†’ Sb2S3 structure ā†’ P63/mmc structure. However, only the perovskite and CaIrO3 structures are stable with respect to dissociation into NaF and MgF2

    Divergent GW182 functional domains in the regulation of translational silencing

    Get PDF
    MicroRNA (miRNA)-mediated gene regulation has become a major focus in many biological processes. GW182 and its long isoform TNGW1 are marker proteins of GW/P bodies and bind to Argonaute proteins of the RNA induced silencing complex. The goal of this study is to further define and distinguish the repression domain(s) in human GW182/TNGW1. Two non-overlapping regions, Ī”12 (amino acids 896ā€“1219) containing the Ago hook and Ī”5 (amino acids 1670ā€“1962) containing the RRM, both induced comparable silencing in a tethering assay. Mapping data showed that the RRM and its flanking sequences in Ī”5, but not the Ago hook in Ī”12, were important for silencing. Repression mediated by Ī”5 or Ī”12 was not differentially affected when known endogenous repressors RCK/p54, GW182/TNGW1, TNRC6B were depleted. Transfected Ī”5, but not Ī”12, enhanced Ago2-mediated repression in a tethering assay. Transfected Ī”12, but not Ī”5, released endogenous miRNA reporter silencing without affecting siRNA function. Alanine substitution showed that GW/WG motifs in Ī”12 (Ī”12a, amino acids 896ā€“1045) were important for silencing activity. Although Ī”12 appeared to bind PABPC1 more efficiently than Ī”5, neither Ī”5 nor Ī”12 significantly enhanced reporter mRNA degradation. These different functional characteristics of Ī”5 and Ī”12 suggest that their roles are distinct, and possibly dynamic, in human GW182-mediated silencing

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells

    The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression

    Get PDF
    The control of messenger RNA (mRNA) function by micro RNAs (miRNAs) in animal cells requires the GW182 protein. GW182 is recruited to the miRNA repression complex via interaction with Argonaute protein, and functions downstream to repress protein synthesis. Interaction with Argonaute is mediated by GW/WG repeats, which are conserved in many Argonaute-binding proteins involved in RNA interference and miRNA silencing, from fission yeast to mammals. GW182 contains at least three effector domains that function to repress target mRNA. Here, we analyze the functions of the N-terminal GW182 domain in repression and Argonaute1 binding, using tethering and immunoprecipitation assays in Drosophila cultured cells. We demonstrate that its function in repression requires intact GW/WG repeats, but does not involve interaction with the Argonaute1 protein, and is independent of the mRNA polyadenylation status. These results demonstrate a novel role for the GW/WG repeats as effector motifs in miRNA-mediated repression

    The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing

    Get PDF
    Proteins of the GW182 family interact with Argonaute proteins and are required for miRNA-mediated gene silencing. These proteins contain two structural domains, an ubiquitin-associated (UBA) domain and an RNA recognition motif (RRM), embedded in regions predicted to be unstructured. The structure of the RRM of Drosophila melanogaster GW182 reveals that this domain adopts an RRM fold, with an additional C-terminal Ī±-helix. The helix lies on the Ī²-sheet surface, generally used by these domains to bind RNA. This, together with the absence of aromatic residues in the conserved RNP1 and RNP2 motifs, and the lack of general affinity for RNA, suggests that the GW182 RRM does not bind RNA. The domain may rather engage in protein interactions through an unusual hydrophobic cleft exposed on the opposite face of the Ī²-sheet. We further show that the GW182 RRM is dispensable for P-body localization and for interaction of GW182 with Argonaute-1 and miRNAs. Nevertheless, its deletion impairs the silencing activity of GW182 in a miRNA target-specific manner, indicating that this domain contributes to silencing. The conservation of structural and surface residues suggests that the RRM domain adopts a similar fold with a related function in insect and vertebrate GW182 family members

    Phosphorylation of human Argonaute proteins affects small RNA binding

    Get PDF
    Argonaute (Ago) proteins are highly conserved between species and constitute a direct-binding platform for small RNAs including short-interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi interacting RNAs (piRNAs). Small RNAs function as guides whereas Ago proteins are the actual mediators of gene silencing. Although the major steps in RNA-guided gene silencing have been elucidated, not much is known about Ago-protein regulation. Here we report a comprehensive analysis of Ago2 phosphorylation in human cells. We find that the highly conserved tyrosine Y529, located in the small RNA 5ā€²-end-binding pocket of Ago proteins can be phosphorylated. By substituting Y529 with a negatively charged glutamate (E) mimicking a phosphorylated tyrosine, we show that small RNA binding is strongly reduced. Our data suggest that a negatively charged phospho-tyrosine generates a repulsive force that prevents efficient binding of the negatively charged 5ā€² phosphate of the small RNA

    Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells

    Get PDF
    Mammalian RNAi machinery facilitating transcriptional gene silencing (TGS) is the RNA-induced transcriptional gene silencing-like (RITS-like) complex, comprising of Argonaute (Ago) and small interfering RNA (siRNA) components. We have previously demonstrated promoter-targeted siRNA induce TGS in human immunodeficiency virus type-1 (HIV-1) and simian immunodeficiency virus (SIV), which profoundly suppresses retrovirus replication via heterochromatin formation and histone methylation. Here, we examine subcellular co-localization of Ago proteins with promoter-targeted siRNAs during TGS of SIV and HIV-1 infection. Analysis of retrovirus-infected cells revealed Ago1 co-localized with siRNA in the nucleus, while Ago2 co-localized with siRNA in the inner nuclear envelope. Mismatched and scrambled siRNAs were observed in the cytoplasm, indicating sequence specificity. This is the first report directly visualizing nuclear compartment distribution of Ago-associated siRNA and further reveals a novel nuclear trafficking mechanism for RITS-like components involving the actin cytoskeleton. These results establish a model for elucidating mammalian TGS and suggest a fundamental mechanism underlying nuclear delivery of RITS-like components
    • ā€¦
    corecore