10 research outputs found

    Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation.

    Get PDF
    Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1

    Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia.

    Get PDF
    Funder: FP7 People: Marie-Curie Actions; doi: http://dx.doi.org/10.13039/100011264; Grant(s): 291851BACKGROUND: B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is the most common pediatric cancer. Identifying key players involved in proliferation of BCP-ALL cells is crucial to propose new therapeutic targets. Runt Related Transcription Factor 1 (RUNX1) and Core-Binding Factor Runt Domain Alpha Subunit 2 Translocated To 3 (CBFA2T3, ETO2, MTG16) are master regulators of hematopoiesis and are implicated in leukemia. METHODS: We worked with BCP-ALL mononuclear bone marrow patients' cells and BCP-ALL cell lines, and performed Chromatin Immunoprecipitations followed by Sequencing (ChIP-Seq), co-immunoprecipitations (co-IP), proximity ligation assays (PLA), luciferase reporter assays and mouse xenograft models. RESULTS: We demonstrated that CBFA2T3 transcript levels correlate with RUNX1 expression in the pediatric t(12;21) ETV6-RUNX1 BCP-ALL. By ChIP-Seq in BCP-ALL patients' cells and cell lines, we found that RUNX1 is recruited on its promoter and on an enhancer of CBFA2T3 located - 2 kb upstream CBFA2T3 promoter and that, subsequently, the transcription factor RUNX1 drives both RUNX1 and CBFA2T3 expression. We demonstrated that, mechanistically, RUNX1 and CBFA2T3 can be part of the same complex allowing CBFA2T3 to strongly potentiate the activity of the transcription factor RUNX1. Finally, we characterized a CBFA2T3-mimicking peptide that inhibits the interaction between RUNX1 and CBFA2T3, abrogating the activity of this transcription complex and reducing BCP-ALL lymphoblast proliferation. CONCLUSIONS: Altogether, our findings reveal a novel and important activation loop between the transcription regulator CBFA2T3 and the transcription factor RUNX1 that promotes BCP-ALL proliferation, supporting the development of an innovative therapeutic approach based on the NHR2 subdomain of CBFA2T3 protein

    ETV6-RUNX1 and RUNX1 directly regulate RAG1 expression: one more step in the understanding of childhood B-cell acute lymphoblastic leukemia leukemogenesis.

    Get PDF
    Funder: SociĂ©tĂ© Française de Biochimie et Biologie MolĂ©culaire ; French Research MinistryFunder: CancĂ©ropole Grand Ouest ; RĂ©gion Bretagne ; SociĂ©tĂ© Française d’HĂ©matologieFunder: Ligue RĂ©gionale contre le cancer ;ETV6-RUNX1 and RUNX1 directly promote RAG1 expression. ETV6-RUNX1 and RUNX1 preferentially bind to the −1200 bp enhancer of RAG1 and the −80 bp promoter of RAG1 gene respectively, and compete for these bindings. ETV6-RUNX1 and RUNX1 induce an excessive RAG recombinase activity. ETV6-RUNX1 participates directly in two events of the multi-hit ALL leukemogenesis: as an initiating event and as an activator of RAG1 expression

    Roles of RUNX1 in the pathogenesis of ETV6-RUNX1 acute lymphoblastic leukaemias.

    No full text
    Les leucĂ©mies aiguĂ«s lymphoblastiques de la lignĂ©e B (LAL-B) sont les cancers pĂ©diatriques les plus frĂ©quents. Dans ce type de leucĂ©mie, l'une des anomalies gĂ©nĂ©tiques les plus frĂ©quentes est la translocation t(12 ;21) aboutissant Ă  la protĂ©ine de fusion ETV6-RUNX1. Cette pathologie est dĂ©crite comme un modĂšle Ă  deux « hits ». Le premier, se produit in utero et gĂ©nĂšre la protĂ©ine de fusion. Le second, correspond Ă  l’acquisition d’anomalies gĂ©nĂ©tiques aprĂšs la naissance. Ces rĂ©arrangements gĂ©nomiques aberrants ont Ă©tĂ© dĂ©crits comme provenant d’une activitĂ© anormale de la recombinasse RAG. Notre travail a consistĂ© dans un premier temps Ă  complĂ©ter le modĂšle de leucĂ©mogĂ©nĂšse Ă  plusieurs « hits ». En continuant notre Ă©tude des LAL B Ă  translocation ETV6-RUNX1, nous nous sommes concentrĂ©s sur le rĂŽle de RUNX1, gĂšne dĂ©rĂ©gulĂ© dans ce type de leucĂ©mie.L’ensemble de nos rĂ©sultats confirme le rĂŽle prĂ©pondĂ©rant de RUNX1 dans l’hĂ©matopoĂŻĂšse et la leucĂ©mogenĂšse grĂące Ă  sa capacitĂ© Ă  s’associer Ă  des protĂ©ines aux fonctions diffĂ©rentes et grĂące Ă  son implication dans la transcription de gĂšnes clĂ© en hĂ©matologie. Nos rĂ©sultats ouvrent donc de nouvelles perspectives dans la comprĂ©hension du contrĂŽle de l’activitĂ© transcriptionnelle de RUNX1 et dans son rĂŽle dans les hĂ©mopathies malignes.B-cell precursor acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer. In this type of leukemia, one of the most common genetic abnormalities is the ETV6-RUNX1 rearrangement. This malignancy is described as a two "hits" model. The first event occurs mainly in utero and generates the fusion gene ETV6-RUNX1. The second event consists in the acquisition of additional genetic abnormalities after birth. These aberrant genomic modifications have been described as resulting from abnormal activity of the RAG recombinase. Our work consisted initially in completing the leukemogenesis model. In continuing our study of ETV6-RUNX1 B-ALL, we focused on the role of RUNX1, an upregulated gene in this type of leukemia. All results confirm the predominant role of RUNX1 in hematopoiesis and leukemogenesis thanks to its ability to associate with proteins with different functions and its involvement in the transcription of key genes in hematology. Our results therefore open new perspectives in understanding the control of transcriptional activity of RUNX1 and its role in malignant hematology

    Additional file 1: Figure S1. of Optimization of proximity ligation assay (PLA) for detection of protein interactions and fusion proteins in non-adherent cells: application to pre-B lymphocytes

    No full text
    PLA with three different pairs of antibodies against ETV6 and RUNX1. Quantification of PLA signals per nucleus in REH cells. Three different pairs of antibodies against ETV6 and RUNX1 were tested as indicated in the figure. (PDF 77 kb

    The Ouzo effect: A tool to elaborate high-payload nanocapsules

    No full text
    International audienceWe investigate the encapsulation in hybridosomesŸ, a type of capsules unique regarding their structure and method of elaboration. HybridosomesŸ are made of a single shell of inorganic nanoparticles (~5 nm) crosslinked with a polymer and are easily obtained via spontaneous emulsification in a ternary mixture THF/water/butylated hydroxytoluene (BHT). Our main finding is that an exceptionally high concentration of a hydrophobic model dye can be loaded in the hybridosomesŸ, up to 0.35 mol.L or equivalently 170 g.L or 450,000 molecules/capsule. The detailed investigation of the encapsulation mechanism shows that the dye concentrates in the droplets during the emulsification step simultaneously with capsule formation. Then it precipitates inside the capsules during the course of solvent evaporation. In vitro fluorescence measurements show that the nano-precipitated cargo can be transferred from the core of the hybridosomesŸ to the membrane of liposomes. In vivo studies suggest that the dye diffuses through the body during several days. The released dye tends to accumulate in body-fat, while the inorganic nanoparticles remain trapped into the liver and the spleen macrophages
    corecore