59 research outputs found

    Preliminary observations of muscle fibre cross sectional area of flexor digitorum brevis in cadaver feet with and without claw toes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to facilitate normal gait, toes require to be in a rectus position during the propulsive phase. This requires a correct balance and sequence of activity of the intrinsic musculature of the feet. Alteration of this balance and sequence may lead to the development of claw toes. Atrophy of the lumbricals occurs in the development of claw toes, but it is not known if changes occur in any other intrinsic muscles, including flexor digitorum brevis. This study set out to investigate whether hypertrophic changes were evident in flexor digitorum brevis in feet with claw toes.</p> <p>Methods</p> <p>Four cadaver feet were investigated, two with rectus toes and two with claw toes. Flexor digitorum brevis was removed from each, and seven anatomically significant tissue sections from each muscle were routinely processed, cut and stained. One hundred and sixty muscle fibre cross sectional areas were measured from each section.</p> <p>Results</p> <p>The mean age of the donors was 81.5 years, and three of the four were female. Results showed that the cross sectional area of fibres from feet with claw toes was 417 μg<sup>2 </sup>significantly greater (p < 0.01) than the cross sectional area of fibres from feet with rectus toes, which was 263 μg<sup>2</sup>.</p> <p>Conclusions</p> <p>Although this study has several limitations, preliminary observations reveal that flexor digitorum brevis muscle fibre cross sectional area is significantly reduced in feet with claw toes. This would indicate a relationship between muscle fibre atrophy of flexor digitorum brevis and clawing of the lesser toes.</p

    Temporal Trends and Predictors of Antimicrobial Resistance Among \u3cem\u3eStaphylococcus\u3c/em\u3e spp. Isolated from Canine Specimens Submitted to a Diagnostic Laboratory

    Get PDF
    Background Resistance to commonly used antimicrobials is a growing concern in both human and veterinary medicine. Understanding the temporal changes in the burden of the problem and identifying its determinants is important for guiding control efforts. Therefore, the objective of this study was to investigate temporal patterns and predictors of antimicrobial resistance among Staphylococcus spp. isolated from canine specimens submitted to the University of Kentucky Veterinary Diagnostic Laboratory (UKVDL) between 1993 and 2009. Methods Retrospective data of 4,972 Staphylococcus isolates assessed for antimicrobial susceptibility using the disk diffusion method at the UKVDL between 1993 and 2009 were included in the study. Temporal trends were assessed for each antimicrobial using the Cochran-Armitage trend test. Logistic regression models were used to investigate predictors of antimicrobial resistance (AMR) and multidrug resistance (MDR). Results A total of 68.2% (3,388/4,972) Staphylococcus isolates were S. intermedius group (SIG), 18.2% (907/4,972) were coagulase-negative staphylococci (CoNS), 7.6% (375/4,972) were S. aureus, 5.8% (290/4,972) were S. hyicus, and S. schleiferi subsp. coagulans comprised 0.2% (12/4,972) of the isolates. The overall percentage of AMR and MDR were 77.2% and 25.6%, respectively. The highest levels of AMR were seen in CoNS (81.3%; 737/907), S. aureus (80.5%; 302/375), and SIG (77.6%; 2,629/3388). The lowest levels of AMR were observed in S. hyicus (57.9%; 168/290) and S. schleiferi subsp. coagulans (33.3%; 4/12). Overall, AMR and MDR showed significant (p \u3c 0.001) decreasing temporal trends. Significant temporal trends (both increasing and decreasing) were observed among 12 of the 16 antimicrobials covering 6 of the 9 drug classes assessed. Thus, significant increasing temporal trends in resistance were observed to β-lactams (p \u3c 0.001) (oxacillin, amoxicillin-clavulanate, cephalothin, and penicillin (p = 0.024)), aminoglycosides (p \u3c 0.001) (gentamicin, and neomycin), bacitracin (p \u3c 0.001), and enrofloxacin (p \u3c 0.001). In contrast, sulfonamide (p \u3c 0.001) (sulfadiazin) and tetracycline (p = 0.010) resistant isolates showed significant decreasing temporal trends in AMR. Staphylococcus spp., geographic region, and specimen source were significant predictors of both AMR and MDR. Conclusions Although not unexpected nor alarming, the high levels of AMR to a number of antimicrobial agents and the increasing temporal trends are concerning. Therefore, continued monitoring of AMR among Staphylococcus spp. is warranted. Future studies will need to identify local factors responsible for the observed geographic differences in risk of both AMR and MDR

    An epidemiologic study of antimicrobial resistance of Staphylococcus species isolated from equine samples submitted to a diagnostic laboratory

    Get PDF
    Antimicrobial resistance limits traditional treatment options and increases costs. It is therefore important to estimate the magnitude of the problem so as to provide empirical data to guide control efforts. The aim of this study was to investigate the burden and patterns of antimicrobial resistance (AMR) among equine Staphylococcussamples submitted to the University of Kentucky Veterinary Diagnostic Laboratory (UKVDL) from 1993 to 2009. Retrospective data of 1711 equine Staphylococcus samples submitted to the UKVDL during the time period 1993 to 2009 were included in the study. Antimicrobial susceptibility testing, that included 16 drugs, were performed using cultures followed by the Kirby-Bauer disk diffusion susceptibility test. The proportion of resistant isolates by animal breed, species of organism, sample source, and time period were computed. Chi-square and Cochran-Armitage trend tests were used to identify significant associations and temporal trends, respectively. Logistic regression models were used to investigate predictors of AMR and multidrug resistance (MDR)

    An Epidemiologic Study of Antimicrobial Resistance of \u3cem\u3eStaphylococcus\u3c/em\u3e Species Isolated from Equine Samples Submitted to a Diagnostic Laboratory

    Get PDF
    Background Antimicrobial resistance limits traditional treatment options and increases costs. It is therefore important to estimate the magnitude of the problem so as to provide empirical data to guide control efforts. The aim of this study was to investigate the burden and patterns of antimicrobial resistance (AMR) among equine Staphylococcus samples submitted to the University of Kentucky Veterinary Diagnostic Laboratory (UKVDL) from 1993 to 2009. Retrospective data of 1711 equine Staphylococcus samples submitted to the UKVDL during the time period 1993 to 2009 were included in the study. Antimicrobial susceptibility testing, that included 16 drugs, were performed using cultures followed by the Kirby-Bauer disk diffusion susceptibility test. The proportion of resistant isolates by animal breed, species of organism, sample source, and time period were computed. Chi-square and Cochran-Armitage trend tests were used to identify significant associations and temporal trends, respectively. Logistic regression models were used to investigate predictors of AMR and multidrug resistance (MDR). Results A total of 66.3% of the isolates were resistant to at least one antimicrobial, most of which were Staphylococcus aureus (77.1%), while 25.0% were MDR. The highest level of resistance was to penicillins (52.9%). Among drug classes, isolates had the highest rate of AMR to at least one type of β-lactams (49.2%), followed by aminoglycosides (30.2%). Significant (p \u3c 0.05) associations were observed between odds of AMR and horse breed, species of organism and year. Similarly, significant (p \u3c 0.05) associations were identified between odds of MDR and breed and age. While some isolates had resistance to up to 12 antimicrobials, AMR profiles featuring single antimicrobials such as penicillin were more common than those with multiple antimicrobials. Conclusion Demographic factors were significant predictors of AMR and MDR. The fact that some isolates had resistance to up to 12 of the 16 antimicrobials assessed is quite concerning. To address the high levels of AMR and MDR observed in this study, future studies will need to focus on antimicrobial prescription practices and education of both practitioners and animal owners on judicious use of antimicrobials to slow down the development of resistance

    Temporal trends and predictors of antimicrobial resistance among Staphylococcus spp. isolated from canine specimens submitted to a diagnostic laboratory

    Get PDF
    Background Resistance to commonly used antimicrobials is a growing concern in both human and veterinary medicine. Understanding the temporal changes in the burden of the problem and identifying its determinants is important for guiding control efforts. Therefore, the objective of this study was to investigate temporal patterns and predictors of antimicrobial resistance among Staphylococcus spp. isolated from canine specimens submitted to the University of Kentucky Veterinary Diagnostic Laboratory (UKVDL) between 1993 and 2009. Methods Retrospective data of 4,972 Staphylococcus isolates assessed for antimicrobial susceptibility using the disk diffusion method at the UKVDL between 1993 and 2009 were included in the study. Temporal trends were assessed for each antimicrobial using the Cochran-Armitage trend test. Logistic regression models were used to investigate predictors of antimicrobial resistance (AMR) and multidrug resistance (MDR). Results A total of 68.2% (3,388/4,972) Staphylococcus isolates were S. intermedius group (SIG), 18.2% (907/4,972) were coagulase-negative staphylococci (CoNS), 7.6% (375/4,972) were S. aureus, 5.8% (290/4,972) were S. hyicus, and S. schleiferi subsp. coagulans comprised 0.2% (12/4,972) of the isolates. The overall percentage of AMR and MDR were 77.2% and 25.6%, respectively. The highest levels of AMR were seen in CoNS (81.3%; 737/907), S. aureus(80.5%; 302/375), and SIG (77.6%; 2,629/3388). The lowest levels of AMR were observed in S. hyicus (57.9%; 168/290) and S. schleiferi subsp. coagulans (33.3%; 4/12). Overall, AMR and MDR showed significant (p Conclusions Although not unexpected nor alarming, the high levels of AMR to a number of antimicrobial agents and the increasing temporal trends are concerning. Therefore, continued monitoring of AMR among Staphylococcus spp. is warranted. Future studies will need to identify local factors responsible for the observed geographic differences in risk of both AMR and MDR

    Temporal trends and predictors of antimicrobial resistance among Staphylococcus spp. isolated from canine specimens submitted to a diagnostic laboratory

    Get PDF
    Background Resistance to commonly used antimicrobials is a growing concern in both human and veterinary medicine. Understanding the temporal changes in the burden of the problem and identifying its determinants is important for guiding control efforts. Therefore, the objective of this study was to investigate temporal patterns and predictors of antimicrobial resistance among Staphylococcus spp. isolated from canine specimens submitted to the University of Kentucky Veterinary Diagnostic Laboratory (UKVDL) between 1993 and 2009. Methods Retrospective data of 4,972 Staphylococcus isolates assessed for antimicrobial susceptibility using the disk diffusion method at the UKVDL between 1993 and 2009 were included in the study. Temporal trends were assessed for each antimicrobial using the Cochran-Armitage trend test. Logistic regression models were used to investigate predictors of antimicrobial resistance (AMR) and multidrug resistance (MDR). Results A total of 68.2% (3,388/4,972) Staphylococcus isolates were S. intermedius group (SIG), 18.2% (907/4,972) were coagulase-negative staphylococci (CoNS), 7.6% (375/4,972) were S. aureus, 5.8% (290/4,972) were S. hyicus, and S. schleiferi subsp. coagulans comprised 0.2% (12/4,972) of the isolates. The overall percentage of AMR and MDR were 77.2% and 25.6%, respectively. The highest levels of AMR were seen in CoNS (81.3%; 737/907), S. aureus(80.5%; 302/375), and SIG (77.6%; 2,629/3388). The lowest levels of AMR were observed in S. hyicus (57.9%; 168/290) and S. schleiferi subsp. coagulans (33.3%; 4/12). Overall, AMR and MDR showed significant (p\u3c0.001) decreasing temporal trends. Significant temporal trends (both increasing and decreasing) were observed among 12 of the 16 antimicrobials covering 6 of the 9 drug classes assessed. Thus, significant increasing temporal trends in resistance were observed to β-lactams (p\u3c0.001) (oxacillin, amoxicillin-clavulanate, cephalothin, and penicillin (p = 0.024)), aminoglycosides (p\u3c0.001) (gentamicin, and neomycin), bacitracin (p\u3c0.001), and enrofloxacin (p\u3c0.001). In contrast, sulfonamide (p\u3c0.001) (sulfadiazin) and tetracycline (p = 0.010) resistant isolates showed significant decreasing temporal trends in AMR. Staphylococcus spp., geographic region, and specimen source were significant predictors of both AMR and MDR. Conclusions Although not unexpected nor alarming, the high levels of AMR to a number of antimicrobial agents and the increasing temporal trends are concerning. Therefore, continued monitoring of AMR among Staphylococcus spp. is warranted. Future studies will need to identify local factors responsible for the observed geographic differences in risk of both AMR and MDR

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24&nbsp;months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500&nbsp;steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30&nbsp;minutes spent performing activities ≥500&nbsp;counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24&nbsp;months), both the number of steps per day (per 500&nbsp;steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500&nbsp;counts per minute (per 30&nbsp;minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score &gt;10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore